Блок питания из понижающего преобразователя. LM2596 — понижающий DC-DC преобразователь напряжения. Трансформаторные блоки питания

LM2596 — это импульсный понижающий регулируемый стабилизатор постоянного напряжения. Имеет высокий КПД. Меньше нагревается если сравнивать с модулями на линейных стабилизаторах. Источник питания может применяться в широком спектре устройств. К безусловным достоинствам относится работа в ощутимом диапазоне входного напряжения. Вместе с большим КПД это дает хорошие результаты при последовательном включении DC-DC LM2596 с химическими источниками тока, солнечными панелями или ветряными генераторами.

Дополнив преобразователь DC-DC LM2596 трансформатором, выпрямителем и фильтром получим блок питания. На входе стабилизатора напряжение должно быть большее выходного минимум на 1.5 В. При потреблении мощности от DC-DC LM2596 более десяти Вт следует применять средства охлаждения.

Предусмотрены крепежные отверстия под винт. Клеммников нет, провода придется паять. Под микросхемой есть отверстия с металлизацией для дополнительного отвода тепла на обратную сторону платы.

Технические характеристики преобразователя LM2596

  • Эффективность преобразования (КПД) : до 92%
  • Частота переключения : 150 кГц
  • Рабочая температура : от -40 до + 85 °C
  • Влияние изменения входного напряжения на уровень выхода : ± 0.5%
  • Поддержание установленного напряжения с точностью : ± 2.5%
  • Входное напряжение : 3-40 В
  • Выходное напряжение : 1.5-35 В (регулируемое)
  • Выходной ток : номинальный до 1А, от 1 до 2А заметно возрастает нагрев, предельный 3A (требуется дополнительный радиатор)
  • Размер : 45x20x14 мм

Принципиальная схема преобразователя LM2596

В некоторых модулях защитный диод D1 включен обратно-параллельно на входе, но в таком случае не нужно забывать подсоединить и предохранитель на входе, который сгорит, если перепутать полярность, также этот диод защищает от всплесков напряжения на выходе.

Существуют варианты с прямым включением диода D1 (SS34, SS54) на входе, обычно это диоды Шоттки, у этих диодов есть два положительных качества: весьма малое прямое падение напряжения (0.2-0.4 вольта) на переходе и очень высокое быстродействие.

Но дешёвые модули на базе LM2596 не имеют защитного диода, с одной стороны — это минус, так как случайно можно убить преобразователь перепутав полярность на входе, а с другой стороны — это плюс, потому что на диоде будет падать некоторое напряжение и греться при больших токах.

Подключается преобразователь очень просто, не стабилизированное напряжение подается на контакты модуля +IN, –IN (плюс и минус соответственно), а выходное напряжение снимается с контактов платы +OUT, -OUT.

С обратной стороны есть стрелка, что указывает в какую сторону идёт преобразование.

Фото галерея














Один из самых востребованных приборов в мастерской начинающего радиолюбителя - это регулируемый блок питания. О том, как самостоятельно собрать регулируемый блок питания на микросхеме MC34063 я уже рассказывал . Но и у него есть ограничения и недостатки. Во-первых, это мощность. Во-вторых, отсутствие индикации выходного напряжения.

Здесь я расскажу о том, как с минимумом временных затрат и усилий собрать регулируемый блок питания 1,2 - 32 вольт и максимальным выходным током до 4-ёх ампер.

Для этого нам понадобится два очень важных элемента:

    Трансформатор, с выходным напряжением до ~25...26 вольт. О том, как его подобрать и где найти, я расскажу далее;

    Готовый модуль регулируемого DC-DC преобразователя со встроенным вольтметром на базе микросхемы XL4015 .

Наиболее распространены и дёшевы модули на базе микросхем XL4015 и LM2956. Самый дешёвый вариант - это модуль без цифрового вольтметра. Для себя я купил несколько вариантов таких DC-DC преобразователей, но более всех мне понравился модуль на базе микросхемы XL4015 со встроенным вольтметром. О нём и пойдёт речь.

Вот так он выглядит. Покупал его на Алиэкспресс, вот ссылка . Можно подобрать подходящий по цене и модификации через поиск .

Обратная сторона платы и вид сбоку.

Основные характеристики модуля:

Не будем забывать, что производители любят завышать характеристики своих изделий. Судя по отзывам, наиболее оптимальный вариант использования данного DC-DC модуля - это работа при входном напряжении до 30 вольт и потребляемом токе до 2 ампер.

Управление DC-DC модулем.

На печатной плате DC-DC модуля установлены две кнопки управления и регулятор выходного напряжения - обычный многооборотный переменный резистор .

    Короткое нажатие кнопки 1 отключает/включает индикацию вольтметра. Своеобразный диммер. Удобно при запитке от АКБ.

    Коротким нажатием на кнопку 2 можно переключать режим работы вольтметра, а именно, отображения входного или выходного напряжения на индикаторе. При использовании совместно с АКБ можно контролировать напряжение батареи и не допускать глубокого разряда.

Калибровка показаний вольтметра.

Сначала кнопкой 2 выбираем, какое напряжение отображать на дисплее вольтметра (входное или выходное). Затем мультиметром замеряем постоянное напряжение (входное или выходное) на клеммах. Если оно отличается от величины напряжения, отображаемого вольтметром, то начинаем калибровку.

Жмём 3-4 секунды на 2-ую кнопку. Показания на дисплее должны потухнуть. Отпускаем кнопку. При этом показания на дисплее появятся и начнут моргать.

Далее кратковременными нажатиями на кнопки 1 и 2 уменьшаем или увеличиваем величину отображаемого напряжения с шагом 0,1V. Если надо увеличить показания, например, с 12,0V до 12,5V, то жмём 5 раз на кнопку 2. Если надо уменьшить с 12V до 11,5V, то, соответственно, жмём 5 раз на кнопку 1.

После того, как калибровка завершена, жмём секунд 5 на кнопку 2. При этом показания на дисплее вольтметра перестанут моргать - калибровка завершена. Также можно ничего не делать и секунд через 10 вольтметр сам выйдет из режима калибровки.

Для того чтобы собрать блок питания, кроме самого DC/DC-модуля нам понадобится трансформатор , а также небольшая схема - диодный мост и фильтр.

Вот схема, которую нам предстоит собрать.

(Картинка кликабельна. По клику откроется в новом окне)

О трансформаторе Т1 я расскажу чуть позднее, а сейчас разберёмся с диодным мостом VD1-VD4 и фильтром C1. Эту часть схемы я буду называть выпрямителем . Далее на фото - необходимые детали для его сборки.

Разводку будущих печатных дорожек на плате я рисовал маркером для печатных плат . Перед этим сделал набросок расположения элементов на плате, развёл соединительные проводники. Затем по шаблону отметил на заготовке места сверления. Сверлил до травления в хлорном железе, так как, если сверлить после травления, могут остаться зазубрины вокруг отверстий и легко повредить окантовку около отверстий.

Затем высушил заготовку после травления, смыл защитный слой лака от маркера "Уайт-спиритом". После этого вновь отмыл и высушил заготовку, зачистил медные дорожки мелкой наждачной бумагой и залудил все дорожки припоем. Вот, что получилось.

Немного о просчётах. Так как делал всё быстро и на коленке, то без "косяков", естественно, не обошлось. Во-первых, сделал плату двухсторонней, а не надо было. Дело в том, что отверстия то без металлизации, и запаять потом тот же разъём в такую двухстороннюю печатную плату непростая задача. С одной стороны контакты запаяешь без проблем, а вот с другой стороны платы уже никак. Так что намучился.

Готовый выпрямитель.

Вместо сетевого выключателя SA1 временно впаял перемычку. Установил входные и выходные разъёмы, а также разъём для подключения трансформатора. Разъёмы устанавливал в расчёте на модульность и удобство пользования, чтобы впредь можно было быстро и без пайки соединять блок выпрямителя с разными DC-DC модулями.

В качестве плавкого предохранителя FU1 использовал готовый с держателем. Очень удобно. И контакты под напряжением прикрыты, и предохранитель заменить без пайки не проблема. По идее подойдёт предохранитель в любом исполнении и типе корпуса.

В качестве диодного моста (VD1 - VD4) я использовал сборку RS407 на максимальный прямой ток 4 ампера. Аналоги диодного моста RS407 - это KBL10, KBL410. Диодный мост можно собрать и из отдельных выпрямительных диодов.

Тут стоит понимать, что сам регулируемый DC-DC модуль рассчитан на максимальный ток 5 ампер, но такой ток он сможет выдержать только в том случае, если на микросхему XL4015 установить радиатор, да, и для диода SS54, что на плате, ток в 5А - максимальный !

Также не будем забывать, что производители склонны завышать возможности своих изделий и срок их службы при таких нагрузках. Поэтому для себя я решил, что такой модуль можно нагружать током до 1 - 2 ампер. Речь идёт о постоянной, долгосрочной нагрузке, а не периодической (импульсной).

При таком раскладе, диодный мост можно выбрать на прямой ток 3-4 ампера. Этого должно хватить с запасом. Напомню, что если собирать диодный мост из отдельных диодов, то каждый из диодов, входящих в состав моста должен выдерживать максимальный потребляемый ток. В нашем случае это 3-4 ампера. Вполне подойдут диоды 1N5401 - 1N5408 (3А), КД257А (3А) и др.

Также для сборки потребуется электролитический конденсатор C1 ёмкостью 470 - 2200 мкФ. Конденсатор лучше выбрать на рабочее напряжение 63V, так как максимальное входное напряжение DC-DC преобразователя может быть до 36V, а то и 38...40V. Поэтому разумней поставить конденсатор на 63V. С запасом и надёжно.

Тут опять же стоит понимать, что всё зависит от того, какое напряжение у вас будет на входе DC-DC модуля. Если, например, планируется использовать модуль для питания 12-ти вольтовой светодиодной ленты, а на входе DC-DC модуля будет напряжение только 16 вольт, то электролитический конденсатор можно поставить с рабочим напряжением 25 вольт или более.

Я же поставил по максимуму, так как данный модуль и собранный выпрямитель, я планировал использовать с разными трансформаторами, у которых разное выходное напряжение. Следовательно, чтобы каждый раз не перепаивать конденсатор, установил его на 63V.

В качестве трансформатора T1 подойдёт любой сетевой трансформатор с двумя обмотками. Первичная обмотка (Ⅰ) сетевая и должна быть рассчитана на переменное напряжение 220V, вторичная обмотка (Ⅱ) должна выдавать напряжение не более 25 ~ 26 вольт.

Если взять трансформатор, на выходе которого будет более 26 вольт переменного напряжения, то после выпрямителя напряжение может быть уже более 36 вольт. А, как мы знаем, модуль DC-DC преобразователя рассчитан на входное напряжение до 36 вольт. Также стоит учитывать тот момент, что в бытовой электросети 220V иногда бывает чуть завышенное напряжение. Из-за этого, пусть и кратковременно, на выходе выпрямителя может образоваться довольно существенный "скачок" напряжения, который превысит допустимое напряжение в 38...40 вольт для нашего модуля.

Ориентировочный расчёт выходного напряжения U вых после диодного выпрямителя и фильтра на конденсаторе:

U вых = (U T1 - (V F *2))*1,41 .

Переменное напряжение на вторичной обмотке трансформатора T1 (Ⅱ) - U T1 ;

Падение напряжения (Forward Voltage Drop ) на диодах выпрямителя - V F . Поскольку в диодном мосте в каждый полупериод ток течёт через два диода, то V F умножаем на 2. Для диодной сборки дело обстоит также.

Так, для RS407 в даташите я нашёл такую строчку: Maximum forward Voltage drop per bridge element at 3.0A peak - 1 Volt. Это означает, что если через любой из диодов моста течёт прямой ток в 3 ампера, то на нём будет теряться 1 вольт напряжения (per bridge element - на каждый элемент моста). То есть берём значение V F = 1V и так же, как и в случае с отдельными диодами, умножаем величину V F на два, так как в каждый полупериод ток течёт через два элемента диодной сборки.

Вообще, чтобы не ломать голову полезно знать, что V F для выпрямительных диодов обычно составляет около 0,5 вольт. Но это при небольшом прямом токе. С его ростом увеличивается и падение напряжения V F на p-n переходе диода. Как видим, величина V F при прямом токе в 3А для диодов сборки RS407 составляет уже 1V.

Так как на электролитическом конденсаторе С1 выделяется пиковое значение выпрямленного (пульсирующего) напряжения, то итоговое напряжение, которое мы получим после диодного моста (U T1 - (V F *2)) необходимо умножить на квадратный корень из 2, а именно √2 ~ 1.41 .

Таким образом, с помощью этой простой формулы мы сможем определить выходное напряжение на выходе фильтра. Теперь осталось дело за малым - найти подходящий трансформатор.

В качестве трансформатора я использовал силовой броневой трансформатор ТП114-163М.

К сожалению, точных данных на него я не нашёл. Выходное напряжение на вторичной обмотке без нагрузки ~19,4V. Ориентировочная мощность данного трансформатора ~7 Вт. Считал по .

Кроме этого решил сравнить полученные данные с параметрами трансформаторов серии ТП114 (ТП114-1, ТП114-2,...,ТП114-12). Максимальная выходная мощность данных трансформаторов - 13,2 Вт. Наиболее подходящим к трансформатору ТП114-163М по параметрам оказался ТП114-12 . Напряжение на вторичной обмотке в режиме холостого хода - 19,4V, а под нагрузкой - 16V. Номинальный ток нагрузки - 0,82А.

Также в моём распоряжении оказался ещё один трансформатор, также серии ТП114. Вот такой.

Судя по выходному напряжению (~22,3V) и лаконичной маркировке 9М, это модификация трансформатора ТП114-9 . Параметры ТП114-9 такие: номинальное напряжение - 18V; номинальный ток нагрузки - 0,73А.

На базе первого трансформатора (ТП114-163М ) мне удастся сделать регулируемый блок питания 1,2...24 вольт, но это без нагрузки. Понятно, что при подключенной нагрузке (потребителе тока) напряжение на выходе трансформатора просядет, и результирующее напряжение на выходе DC-DC преобразователя также уменьшится на несколько вольт. Поэтому, этот момент надо учитывать и иметь ввиду.

На базе второго трансформатора (ТП114-9 ) уже получится регулируемый блок питания на 1,2...28 вольт. Это также без нагрузки.

Про выходной ток. Производителем заявлено, что максимальный выходной ток DC-DC преобразователя - 5А. Судя по отзывам, максимум 2А. Но, как видим, трансформаторы мне удалось найти достаточно маломощные. Поэтому выжать даже 2 ампера мне вряд ли получится, хотя всё зависит от выходного напряжения DC-DC модуля. Чем меньше оно будет, тем больший ток удастся получить.

Для всякого маломощного "разносола" данный блок питания подойдёт на ура. Вот запитка "веселящего шарика" напряжением 9V и током около 100 mA.

А это уже запитка 12-ти вольтовой светодиодной ленты длиной около 1 метра.

Также существует облегчённая, Lite-версия данного DC-DC преобразователя , которая собрана также на микросхеме XL4015E1.

Единственное отличие, это отсутствие встроенного вольтметра.

Параметры аналогичные: входное напряжение 4...38V, максимальный ток 5А (рекомендуется не более 4,5А). Реально же использовать при входном напряжении до 30V, 30V с небольшим. Ток нагрузки не более 2...2,5А. Если нагружать сильнее, то ощутимо греется и, естественно, снижается срок службы и надёжность.

9 Ноя 2016 Новые преобразователи серии TEL 8WI от компании TRACO Power включают в себя новейшие технологии по оптимизации размеров, стоимости, производительности и надежности. Преобразователи изготавливаются в очень компактном и прочном металлическом DIP-16 корпусе с размерами 24,1×14×8,5 мм. Обладая высоким КПД до 86%, модули способны надежно работать при температурах до +70 °C при полной нагрузке или до 80 °C с половинной нагрузкой. Кроме того, модель...
  • 9 Ноя 2016 TEQ300WIR – новая линейка 300 Вт изолированных DC/DC-преобразователей серии TEQ компании TRACO Power, сертифицированных для применения в ЖД устройствах (есть сертификат EN 50155). Модули серии имеют ультраширокий входной диапазон напряжений (4:1) и выпускаются в прочном, запаянном металлическом корпусе. Дизайн преобразователей, а именно наличие винтовых креплений, предполагает их применение в промышленных и транспортных системах, в которых...
  • 9 Ноя 2016 THM 6WI – новая линейка 6 Вт источников питания в DIP-24 корпусе от компании TRACO Power, имеющая сертификаты AAMI/ANSI ES 60601-1:2005(R) и IEC/EN 60601-1 3й редакции, позволяющие применение модулей данной серии в медицинских устройствах. Модули линейки имеют усиленную двойную изоляцию типа 2хMOPP (Means Of Patient Protection – средства защиты пациента), а напряжение изоляции вход/выход составляет 5000 VAC. Все это, совместно с широким (4:1) ...
  • 9 Ноя 2016 Новый рекорд в области DC/DC конверторов в SIP-корпусе - 9 Вт DC/DC преобразователь TRACO Power. Модули TMR 9 & TMR 9WI выполнены в полностью металлическом SIP-8 корпусе и имеют два дополнительных вывода с корпуса на плату для улучшения теплоотвода. Таким образом достигается диапазон рабочих температур от -40 до +85°C. На сегодняшний день есть два типа линеек – TMR 9 с диапазоном входного напряжения 2:1 и TMR 9WI с диапазоном входного...
  • 9 Ноя 2016 THM 10WI – это новая линейка 10 Ваттных источников питания в DIP-24 корпусе от компании TRACO Power, имеющая сертификаты AAMI/ANSI ES 60601-1:2005(R) и IEC/EN 60601-1 3й редакции, позволяющие применение модулей данной серии в медицинских устройствах. Модули линейки имеют усиленную двойную изоляцию типа MOPP (Means Of Patient Protection – средства защиты пациента), а напряжение изоляции вход/выход составляет 5000 VAC. Все это, совместно с широким...
  • 9 Ноя 2016 Компания TRACO Power представлет новую линейку высокомощных DC/DC преобразователей TMDC 60 в пластиковом корпусе, с диапазоном входного напряжения 4:1. Высококачественные компоненты, используемые для создания модулей данной серии, обеспечивают им высокий КПД (до 92%) и широкий диапазон рабочих температур (-40…+70°С без снижения КПД и до +85°С со снижением КПД на 50%).Входное напряжение, В9-36 / 18-75Выходное напряжение, В5,1 / 12 / 24 / 48 /КПД, ...
  • 4 Апр 2016 На сегодня в семейство DC/DC – преобразователей TRACO Power входят две линейки модулей мощностью 3 и 5 Вт в DIP-корпусе размерами 13,2 х 9,1 х 10,2 мм. При этом рабочая температура модулей лежит в диапазоне от -40°C до +75°С. Следует отметить, что модули сконструированы так, что имеют широкий (4:1) диапазон входного напряжения, а также не требуют минимальной нагрузки. Помимо этого, у преобразователей присутствует возможность удаленного...
  • 15 Янв 2016 Серия модулей, которые являются неизолированными SIP решениями в DC/DC преобразователях, способны доставить до 60 А выходного тока. Эти модули работают в широком диапазоне входного напряжения (4,5-14 В) и обеспечивают точно регулируемое выходное напряжение от 0,59 В до 6,0 В при постоянном токе, программируются через внешний резистор.модельUвхUвыхIвыхэффективностьNQR002 3.0 - 14.0 В0.60 - 5.5 В2 A93%NSR003 4.5 - 14.0 В0.59 - 6.0 В3 ...
  • 14 Янв 2016 TLynx – семейство неизолированных DC/DC преобразователей 3-го поколения со стандартами мирового класса. Это высокоэффективные, улучшенные по температурным параметрам модули работают без теплового снижения мощности в широком диапазоне входных напряжений от 2,4 до 16 В постоянного тока и обеспечивают точно регулируемое выходное напряжение от 0,59 В до 8 В, программируемого через внешний резистор. Модули предлагают наилучшую в классе переходную...
  • 14 Янв 2016 Тонкий неизолированный DC/DC преобразователь с низкой высотой профиля в 2.8-3.0 мм. Эти модули работают в широком диапазоне входного напряжения и обеспечивают регулируемое выходное напряжение от 0,45 до 5.5 В, программируемого с помощью внешнего резистора или контроля по шине PMBus.МодельКоммуникацияUвхUвыхIвыхЭффективностьОткрытого типаPNDT012 (Pico) Digital3.0 - 14.4 В0.45 - 5.5 В12 A96%PNVT012 (Pico) Analog3.0 - 14.4 В0.6 - 5.5 В12 ...
  • 12 Янв 2016 TEN 60WIN - линейка высокопроизводительных DC/DC преобразователей компании TRACO Power с ультрашироким входом. Модули выполнены в полностью металлическом корпусе размерами 2” х 1” дюйма и стандартным промышленным расположением выводов. У модулей данной серии присутствуют такие функции как дистанционное включение/выключение, блокировка падения напряжения и защита от короткого замыкания. Помимо этого, модули обладают регулируемым выходным...

  • 25 Дек 2015 Уникальная серия DC/DC преобразователей специально разработана для кратчайшего выхода на рынок продукта клиента, а также для приложений, требующих широкий входной и выходной диапазон.Эти высокоэффективные модули работают в ультрашироком входном диапазоне напряжений, обладают превосходной температурной характеристикой КПД, обеспечивают высокоточную регулировку по выходу в диапазоне 3-18 В. Выходное напряжение задается внешним...

  • 25 Дек 2015 Серия неизолированных модулей главной особенностью которых является два независимых выхода по питанию, не имеющих аналогов и конкурентов на мировом рынке питания. Серия этих модулей сокращает занимаемое место на плате на 30% по сравнению с решениями по обеспечению двух линий питания от конкурентов или в классе. Технология PMBus и Tunable Loop в каждом модуле. Каждый модуль состоит из двух независимых преобразователей DC/DC, способных работать...

  • 24 Дек 2015 Серия модулей на основе новых стандартов. Это модули с точкой нагрузки, неизолированные DC/DC, выпускающиеся в DOSA стандарте с цифровыми и аналоговыми версиями в одном корпусе.Все модули обладают технологиями PMBus и перестраеваемым контуром Tunable Loop для уменьшения места. Плотность тока в 9 А на кв.см является лидирующей в отрасли.МодельКоммуникацияUвхUвыхIвыхЭффективностьPNVX002 Analog3.0 - 14.0 В0.60-5.5 В2 A94%PDT003 Digital PMBus3.0 - ...
  • 13 Ноя 2015 DC/DC – преобразователи и блоки питания Linear Technology. По вопросам применения, заказов образцов и приобретения обращайтесь к нашим специалистам департамента Активных компонентов.
  • 11 Ноя 2015 Уже много лет компания TRACO Power является одним из мировых лидеров на рынке промышленных источников питания. На рынке DC/DC преобразователей компания представлена модулями мощность от 1 Вт до нескольких кВт, выполненных в различных типах корпусов.
  • 8 Окт 2015 ATCA PIM модули GE Critical Power представлены серией PIM400 входного питания для AdvancedTCA систем.
  • 5 Окт 2015 DC/DC – преобразователи и блоки питания VPT По вопросам применения, заказов образцов и приобретения обращайтесь к нашим специалистам департамента Высоконадежных компонентов.
  • 5 Окт 2015 По вопросам применения, заказов образцов и приобретения обращайтесь к нашим специалистам департамента Высоконадежных компонентов.

  • 30 Сен 2015 TVN 5WI это линейка малошумящих DC/DC преобразователей от компании и TRACO Power.
  • Линейный и импульсный источники питания

    Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, - 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

    Есть два основных типа источников питания, которые выполняют перечисленные функции, - линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

    Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

    Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом - транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

    В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина - скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).

    Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

    Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило - около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

    Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то - для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные - тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

    ⇡ Общая схема блока питания стандарта ATX

    БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.

    На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

    1. фильтр ЭМП - электромагнитных помех (RFI filter);
    2. первичная цепь - входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
    3. основной трансформатор;
    4. вторичная цепь - выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

    ⇡ Фильтр ЭМП

    Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) - когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) - когда ток течет в одном направлении.

    Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

    Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.

    В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, - импульсные БП являются мощным источником помех.

    В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.

    Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV - Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.

    Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте - вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

    Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае - нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

    ⇡ Входной выпрямитель

    После фильтра переменный ток преобразуется в постоянный с помощью диодного моста - как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, - атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.

    ⇡ Блок активного PFC

    В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, - такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.

    Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

    Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

    Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) - не путать с КПД!

    У импульсного БП коэффициент мощности изначально довольно низкий - около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.

    В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой - что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

    Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).

    Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество - не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

    Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

    ⇡ Основной преобразователь

    Общий принцип работы для всех импульсных БП изолированной топологии (с трансформатором) один: ключевой транзистор (или транзисторы) создает переменный ток на первичной обмотке трансформатора, а ШИМ-контроллер управляет скважностью их переключения. Конкретные схемы, однако, различаются как по количеству ключевых транзисторов и прочих элементов, так и по качественным характеристикам: КПД, форма сигнала, помехи и пр. Но здесь слишком многое зависит от конкретной реализации, чтобы на этом стоило заострять внимание. Для интересующихся приводим набор схем и таблицу, которая позволит по составу деталей опознавать их в конкретных устройствах.

    Транзисторы Диоды Конденсаторы Ножки первичной обмотки трансформатора
    Single-Transistor Forward 1 1 1 4
    2 2 0 2
    2 0 2 2
    4 0 0 2
    2 0 0 3

    Помимо перечисленных топологий, в дорогих БП встречаются резонансные (resonant) варианты Half Bridge, которые легко опознать по дополнительному крупному дросселю (или двум) и конденсатору, образующим колебательный контур.

    Single-Transistor Forward

    ⇡ Вторичная цепь

    Вторичная цепь - это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой - 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки - одной или нескольких на шину (на самой высоконагруженной шине - 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

    Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В - экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

    ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно - на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

    Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других - падает напряжение. Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации.

    Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.

    В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.

    Выходной фильтр

    Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

    В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

    ⇡ Дежурное питание +5VSB

    Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).

    ⇡ Методика тестирования блоков питания

    Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой - совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ - для шины 12 В и для шины 5/3,3 В.

    Цвет точки означает процент отклонения:

    • зеленый: ≤ 1%;
    • салатовый: ≤ 2%;
    • желтый: ≤ 3%;
    • оранжевый: ≤ 4%;
    • красный: ≤ 5%.
    • белый: > 5% (не допускается стандартом ATX).

    Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

    Другой не менее важный тест - определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ - для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

    Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый - 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

    Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени. Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ.

    В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

    Более насущный для пользователя вопрос - шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром - также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.

    Сегодня я напишу не только о товаре, который я тестировал, а и о том, как иногда бывает, когда планируешь одно, а выходит почему то совсем другое.
    В общем кому интересно, прошу под кат.

    Недавно коллега ksiman выкладывал «половинки» этого преобразователя, той же платки, только без устройства индикации, потому отчасти эти обзоры дополняют друг друга.
    В комментариях я упомянул о том, что также планирую сделать обзор на эту плату. В обзоре писалось, что все закончилось не очень хорошо (а вернее совсем плохо). У меня также все было не очень гладко, хотя закончилось лучше, но об этом чуть позже, а пока перейду к обзору своего варианта этого DC-DC преобразователя.

    В общем увидел я такой себе мелкий DC-DC преобразователь и захотел пощупать, что он из себя представляет. Заказал на обзор, через некоторое время получил, но как то некогда было с ним разбираться и я в общем пока отложил его.

    Через некоторое время дошли у меня наконец то руки, сделал некоторое количество фотографий, ощупал, осмотрел.
    Пришел он в небольшом запаянном пакете.

    Сам по себе небольшой, размером меньше спичечного коробка.
    При этом производитель заявляет следующие характеристики:
    Input voltage: 5V-30V
    Выходное напряжение: 0.8V-29V
    Выходной ток: максимум 5A (Требуется радиатор при токах более 3A)
    КПД преобразования: 95% (максимум)
    Частота преобразования: 300KHz
    Выходные пульсации: 50mV (максимум)
    Рабочая температура: -40℃ to +85℃
    Размер: 51 x 26.3 x 114

    По бокам находятся разъемы для подключения к блоку питания и к нагрузке.
    Сборка аккуратная, тут ничего плохого точно не скажу.

    Сверху находятся два подстроечных резистора, один регулирует ток, второй соответственно напряжение.
    Ток регулируется в диапазоне 0.06-5.5 Ампера.
    Напряжение в диапазоне 0.82-30 Вольт
    Также около подстроечных резисторов находится красный светодиод индикации перехода в режим стабилизации тока.

    Обратная сторона платы можно сказать «голая», присутствует только шунт в виде резистора сопротивлением 50мОм.
    Кстати сразу замечу, что в устройствах такого типа, где тепло с микросхемы отводится на плату, для лучшей передачи тепла вообще принято делать много переходов с металлизацией между сторонами платы. Здесь этого, к сожалению, не сделано. Потому установка радиатора с обратной стороны неэффективна.

    Как я выше писал, состоит преобразователь из двух плат. DC-DC преобразователь ничем не отличается от преобразователя из вышеуказанного мною . Отличие этих двух модификаций в том, что к моему была прицеплена плата индикации.
    Причем подключается она через монтажные стойки.
    Левые две - вход платы преобразователя, правые соответственно к выходу.
    Такое подключение позволяет контролировать напряжение на выходе и измерять протекающий ток.
    Конструкция получается весьма удобной и простой.

    Преобразователь собран с использованием ШИМ контроллера XL4005E1. Это ШИМ контроллер рассчитанный на 5 Ампер выходного тока и входное напряжение до 32 Вольт.
    Судя по даташиту весьма неплохая микросхема, но как показала практика, весьма «нежная».
    Также стоит отметить диод SK86, судя по он имеет максимальный ток в 8 Ампер. Если честно, мне непонятно как он может рассеивать мощность, которая на нем выделяется при таком токе.
    Но в любом случае производитель поставил довольно мощный диод, частенько ставят что нибудь похуже.

    На этом фото видно часть, отвечающую за регулировку ограничения тока и индикации окончания заряда (справа видно два небольших светодиода).
    Схему блока питания можно увидеть в коллеги Ksiman-а, за что ему большое спасибо:)

    Сверху расположены два индикатора.
    Верхний, синего цвета, отображает выходное напряжение, до 10 Вольт отображает в формате 1.23, выше 10 Вольт- 23.4. Последний разряд отображает символ - V
    Нижний индикатор, красного цвета, отображает выходной ток в формате 1.23, последний разряд отображает символ - А.
    Слева присутствует разъем RX-TX. Это была одна из причин, почему я заказал эту плату, хотелось попробовать подвязать ее к компьютеру, но увы, ничего не вышло:(
    Назначение правого разъема мне вообще непонятно.

    Плата собрана скажем так, на троечку, вроде и нормально, но явно видна некоторая неаккуратность.

    На плате установлены:
    Микроконтроллер
    Сдвиговый регистр для управления индикатором
    Предположительно операционный усилитель sgm8592y
    Стабилизатор напряжения 7130H

    А вот теперь небольшой нюанс. Это вторая плата, первая умерла смертью храбрых в ходе тестирования и подготовки обзора. Я не могу сказать точно от чего она умерла, но выглядело это так - Входное напряжение около 28-29 Вольт, к выходу прицеплен резистор 10 Ом, я плавно повышаю напряжение на резисторе при помощи подстроечного резистора платы, потом небольшой щелчок и на выходе входное напряжение, пробой силового транзистора.
    Возможно брак, возможно какие то пульсации или еще что то, но я бы не советовал задирать сильно входное напряжение, хотя по даташиту и указано 32 Вольта и максимальное 35 Вольт.
    Лучше ограничить на уровне 25-27 Вольт.
    После этого я заказал вторую плату, так как по подготовке к обзору было сделано уже довольно много.

    При первом включении плата настроена на выходное напряжение около 5 Вольт. Ток около 1 Ампера.
    На фото плата подключена к 24 Вольта блоку питания из моего недавнего .
    Если выкрутить подстроечный резистор регулировки напряжения на максимум, то выходное напряжение на холостом ходу равно входному.

    Особо расписывать по плате вроде и нечего, потому перейду к тестированию.
    В тестировании будут принимать участие:
    Обозреваемая плата.
    на 24 Вольта.
    Бесконтактный

    Электронная
    Ручка и бумажка:)

    Методика тестирования была такой:
    Измерялся нагрев и пульсации выходного напряжения при следующих установленных напряжениях 5-10-15-20 Вольт, при каждом напряжении задавались токи нагрузки 1-2-3 Ампера.
    Сначала измерялись характеристики при 5 Вольт, под током 1-2-3 Ампера, с интервалом 10 минут, после этого плата остывала до комнатной температуры и цикл повторялся, но уже со следующим напряжением. Итого вышло 12 измерений.
    Проблем добавляла динамическая индикация, приходилось делать кучу снимков чтобы потом выбрать такой, на котором видно максимальное количество разрядов индикатора. Вообще индикация имеет довольно низкую частоту переключения разрядов, мерцание немного но заметно.
    Первая проверка на холостом ходу, пульсации практически отсутствуют.
    Делитель щупа осциллографа стоит в положении 1:1.



    Более подробные результаты тестирования

    3. 5 Вольт 3 Ампера
    4. 10 Вольт 1 Ампер

    5. 10 Вольт 2 Ампера
    6. 10 Вольт 3 Ампера

    7. 15 Вольт 1 Ампер
    8. 15 Вольт 2 Ампера

    9. 15 Вольт 3 Ампера
    10. 20 Вольт 1 Ампер

    11. 20 Вольт 2 Ампера
    12. 20 Вольт 3 Ампера


    Весь цикл проверки занял около 3.5 часа.
    Полученные температурные режимы:
    Контролировалась температура ШИМ контроллера, диода, дросселя и выходного конденсатора.
    Когда испытывал, то решил проверять на 3 Ампера, как было написано на странице магазина, решил что спалю, так спалю, будет пара таких лежать. Но эксперимент показал, что преобразователь вышел и микруха не ушла в защиту, максимально достигнутая температура у ШИМ контроллера была 110.2 градуса.

    Немного о применении платы

    На фото выше вы можете увидеть заводской блок питания на 24 Вольта. Но так как была эпопея с перезаказом платы, то как вы понимаете, заниматься я начал этим устройством довольно давно, и заводского блока питания у меня в наличии еще не было, потому пришлось делать самому.
    Да и заводской БП по моим прикидкам не очень лез в выбранный мною корпус, хотя гораздо проще использовать именно заводской.
    БП моей конструкции я уже описывал в одном из , это та же плата, но некоторые элементы установлены больше\мощнее. Если интересно, то могу выложить схему здесь со всеми изменениями.
    Мысли в слух, может стоит заняться производством конструкторов.....:)

    Подготовил для сборки такой себе «конструктор»:)

    Так как изначально я все таки рассчитывал на примерно 25-28 Вольт и 3 Ампера, то БП делал с запасом, Ватт на 90-100. А так как один из ключевых элементов, габарит которого напрямую зависит от мощности, это трансформатор, то и его выбрал с запасом.
    Правда плата не была рассчитана под такой размер, но с некоторыми ухищрениями я его таки всунул:)

    Вышел такой себе аккуратный трансформатор.

    Еще одной из проблем было то, что мне надо в районе низковольтной части добиться минимальной толщины, чтобы элементы блока питания не мешали плате преобразователя.
    Из-за этого часть элементов пришлось положить.
    Плата получилась немного некрасивой, но все элементы соответствуют расчетной мощности, мне это было главнее.
    Радиатор выходного диода представлял собой алюминиевую пластинку, стоящую вдоль длинной стороны, для безопасности я изолировал его в районе расположения оптрона обратной связи.
    На этом фото его еще нет.
    Радиатор ШИМ контроллера отрезан из специального профиля (покупал как то с метр, плата страссирована под два типа радиаторов)

    Блок питания получился габаритами гораздо больше чем плата преобразователя.

    Но и тут не все было просто.
    Часть элементов у меня была в наличии, как у любого запасливого радиолюбителя, а часть элементов надо было купить.
    В список покупок попала и микросхема ШИМ контроллера.
    Программа расчета импульсного БП рекомендовала мне использовать TOP249. Но как то так совпало, что магазин, где я обычно покупаю, был закрыт и я пошел в другой, но там 249 не было, но был 250, он немного мощнее. Я подумал что ничего страшного, куплю.
    Когда произвел первое включение БП, то не подавал признаков жизни, вообще.
    Единственное что было, это напряжение 5 Вольт на управляющей ноге ШИМ контроллера, оно там и должно быть, но ШИМ контроллер не стартовал.
    Так как я собрал довольно много разных блоков питания, то прекрасно знал, что вся остальная схема в полном порядке, да и при непорядках в остальной части ведет она себя по другому, делая попытки запуска. Но здесь было тихо.
    Порывшись в запасах, я нашел ШИМ контроллер послабее, TOP247, поставил его и БП завелся с пол пинка.
    Получается что купил подделку. Если есть кто то из Харькова, то могу сказать где НЕ надо покупать.
    Причем фейковая микруха имеет лазерную маркировку, а нормальная - маркировку краской.

    В общем поборов очередную проблему я приступил к дальнейшей сборке.
    Собрал в кучку все необходимое, клеммы, переменные резисторы и ручки к ним, провода, выключатель питания.

    Резистор регулировки напряжения подключается двумя проводами, тока - тремя.
    Так как вышепроведенный эксперимент показал, что плата не дает нормально даже 3 Ампера, то я решил сделать ограничение на 2 Ампера, а так хотелось 3:(
    Для этого я поставил параллельно крайним контактам переменного резистора постоянный резистор на 5.1 КОм. Получился максимум регулировки до примерно 2.3 Ампера.
    Диапазон регулировки напряжения я так же ограничил, и таким же способом, но номинал поставил 51КОм, получилось около 26 Вольт.
    Заодно вышепроведенные операции немного растянули шкалу регулировки и стало удобнее пользоваться,

    Дальше я разметил и рассверлил/вырезал все необходимые отверстия, под индикатор, переменные резисторы, клеммы, кабель питания и выключатель.

    В последний момент чуть не забыл подключить провода к плате. Дело в том что я плату думал приклеить, соответственно провода потом не подключить.

    Плата, резисторы и клеммники установлены. Большая честь внутренностей стоит буквально впритык, но все влезло:)

    Провода к блоку питания припаиваются непосредственно перед его установкой.
    Если бы это был заводской блок питания, было бы удобнее, там уже есть клеммы.

    Стягиваем входные провода стяжками, чтобы не лезли к радиатору, компонуем остальные и можно закрывать.

    Все, блок питания практически готов, очень нехватает темного стекла на индикатор.
    На самом деле показания читаются лучше, чем получилось на фото. Со вспышкой видно выключенные сегменты, а без вспышки индикатор начинает слепить, так что лучше фото сделать у меня не вышло, уж извините.
    Управление не подписывал, в принципе все сделал максимально логично, синий индикатор - напряжение, соответственно его регулирует переменник с синей ручкой, аналогично ток.
    Вывел на панель индикацию режима ограничения тока, два светодиода с индикации режима заряда не выводил, не вижу в них смысла.

    Ограничение тока получилось на уровне 2.23 Ампера, думаю что в таком режиме плата будет работать без проблем.
    Хотел сначала прицепить к плате радиатор, но потом понял всю бессмысленность данной идеи, так как греется и дроссель, который надо увеличивать и диод с микросхемой, а тепло на обратную сторону платы передается слабо.

    Кстати насчет дросселя, теоретически эта плата с охлаждением должна была выдать 30 Вольт 5 Ампер, это 150 Ватт. Формально это половина он моего лабораторного 300 Ватт блока питания, только вот если зайти в его и примерно сравнить габариты силовых элементов, то разница как говорится налицо. Эта плата даже теоретически не сможет выдать 5 Ампер, разве что с другим дросселем и при низком выходном напряжении.


    И так резюме:
    Плюсы .
    Аккуратное изготовление, не отличное, но вполне хорошее.
    Преобразователь прошел проверку на токе до 3 Ампер, хотя и с большими температурами.
    Точность измерения тока и напряжения вполне неплохая, особых нареканий не вызвала.
    Низкий уровень пульсаций, максимально зарегистрировано около 60мВ при частоте работы 300КГц.
    Компактная конструкция.

    Минусы .
    Большой нагрев на токах более 2-2.5 Ампер.
    Следует аккуратно относиться к превышению входного напряжения или поставить защитный супрессор по входу.
    Дроссель намотан тонким проводом

    Мое мнение, на токах до 2 Ампер можно вполне нормально эксплуатировать. Несколько расстроило то, что не смог разобраться с сигналами RF/TX. Преобразователь вполне можно доработать «малой кровью», перемотать дроссель более толстым проводом с уменьшением количества витков раза в 1.5, либо заменить на более мощный (это лучше). Заменить диод на более мощный, а еще лучше еще и вынести его, хотя бы на обратную сторону платы, улучшится тепловой режим работы.
    Заявленный КПД в 95% вряд ли достижим, но думаю что реальный где то рядом, но с большой оговоркой, при определенном режиме работы. При токе в 3 Ампера на плате выделялось около 4 Ватт тепла (ориентировочно), что дается нам очень низкий КПД при 5 Вольт выходных. С повышением выходного напряжения КПД постепенно растет, хотя у СтепДауна не должно быть такой крутой зависимости.
    В общем что можно сказать, потратил деньги на запчасти, кучу времени на сборку платы БП, сборку всего этого вместе, но в результате получил БП с характеристиками:
    Выходное напряжение - 0.85-24 Вольта.
    Выходной ток - 0.06-2.25 Ампера.
    Негусто, но имеет право на жизнь, просто блок питания можно было не делать такой мощности.

    Надеюсь что предоставленная мною информация была полезна.

    Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.