Дифракционный предел. Угловой диаметр Угловой диаметр дифракционного

Если отрезок длиной D перпендикулярен линии наблюдения (более того, она является серединным его перпендикуляром) и находится на расстоянии L от наблюдателя, то точная формула для углового размера этого отрезка: . Если размер тела D мал по сравнению с расстоянием от наблюдателя L, то угловой размер (в радианах) определяется отношением D/L, так как для малых углов. При удалении тела от наблюдателя (увеличении L), угловой размер тела уменьшается.

Понятие углового размера очень важно в геометрической оптике , и в особенности применительно к органу зрения - глазу . Глаз способен регистрировать именно угловой размер объекта. Его реальный, линейный размер определяется мозгом по оценке расстояния до объекта и из сравнения с другими, уже известными телами.

В астрономии

Угловой размер астрономического объекта, видимый с Земли , обычно называется угловым диаметром или видимым диаметром . Вследствие удалённости всех объектов, угловые диаметры планет и звёзд очень малы и измеряются в угловых минутах (′) и секундах(″) . Например, средний видимый диаметр Луны равен 31′05″ (вследствие эллиптичности лунной орбиты угловой размер изменяется от 29′24″ до 33′40″). Средний видимый диаметр Солнца - 31′59″ (изменяется от 31′27″ до 32′31″). Видимые диаметры звёзд чрезвычайно малы и лишь у немногих светил достигают нескольких сотых долей секунды.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Угловой диаметр" в других словарях:

    УГЛОВОЙ ДИАМЕТР, в астрономии видимый диаметр небесного тела, выраженный в угловых мерах (обычно в дуговых градусах и минутах). Это угол, вершиной которого является глаз наблюдателя, а основанием видимый диаметр наблюдаемого тела. Если известно… … Научно-технический энциклопедический словарь

    угловой диаметр - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN angular diameter …

    Видимый диаметр объекта, измеряемый в угловых единицах, т.е. в радианах, градусах, дуговых минутах или секундах. Угловой диаметр зависит как от истинного диаметра, так и от расстояния до объекта … Астрономический словарь

    угловой диаметр - kampinis skersmuo statusas T sritis fizika atitikmenys: angl. angular diameter; apparent diameter vok. scheinbare Durchmesser, m; Winkeldurchmesser, m rus. видимый диаметр, m; угловой диаметр, m pranc. diamètre angulaire, m; diamètre apparent, m … Fizikos terminų žodynas

    угловой диаметр приемника - (η2) Угол, под которым наблюдается наибольший размер видимой площади приемника из исходного центра (β1 = β2 = 0°). [ГОСТ Р 41.104 2002] Тематики автотранспортная техника … Справочник технического переводчика

    угловой диаметр светоотражающего образца - (η1) Угол, под которым наблюдается наибольший размер видимой площади светоотражающего образца либо из центра источника света, либо из центра приемника (β1 = β2 = 0°). [ГОСТ Р 41.104 2002] Тематики автотранспортная техника … Справочник технического переводчика

    угловой диаметр приемника (η 2) - 2.4.3 угловой диаметр приемника (η2): Угол, под которым наблюдается наибольший размер видимой площади приемника из исходного центра (b1 = b2 = 0°). Источник …

    угловой диаметр светоотражающего образца (η 1) - 2.4.2 угловой диаметр светоотражающего образца (η1): Угол, под которым наблюдается наибольший размер видимой площади светоотражающего образца либо из центра источника света, либо из центра приемника (b1 = b2 = 0°). Источник … Словарь-справочник терминов нормативно-технической документации

    В изначальном значении это отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам. Содержание 1 Диаметр геометрических фигур … Википедия

    Поперечник видимого диска этих светил, выраженный в угловой мере. Зная видимый диаметр и расстояние от Земли, легко вычислить истинные размеры светил. Угловой диаметр изменяется в зависимости от расстояния, и так как все движения светил относятся … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона


Применение зеркал в звездном интерферометре на телескопе. Угловой диаметр Бетельгейзе оказался равным 0 05, что соответствует поперечнику 400 000 000 км.
Угловой диаметр Бетельгейзе оказался равным 0 05, что соответствует поперечнику в 400000000 км. В последнее время в обсерватории Маунт-Вильсон построен интерферометр, позволяющий раздвигать зеркала до 18 м и, следовательно, измерять углы в тысячные доли секунды.
Схема интерферометра Майкельсона. Si я Si - зеркала. Pi - разделительная пластинка. Рг - компенсационная пластинка. Угловой диаметр колец в зависимости от разности длин плеч интерферометра и порядка интерференции определяется из соотношения 2d cos r т К. Очевидно, что перемещение зеркала на четверть длины волны будет соответствовать при малых значениях угла г переходу в поле зрения светлого кольца на место темного, и наоборот, темного на место светлого.
Сферическая аберрация. Угловой диаметр кружка рассеяния обычно выражают в мил-лирадианах. На рис. 3.15 показаны зависимости углового размера сферической аберрации от размера относительного отверстия для тонких линз из различного материала и сферического зеркала.
Солнца (угловой диаметр Солнца равен ЗГ 0 01 рад.
А Когда угловой диаметр Луны больше: когда она находится вблизи зенита или вблизи горизонта.
Иногда пользуются угловым диаметром кружка рассеяния угл.
Как хорошо известно, угловые диаметры, под которыми видны звезды с Земли, так малы, что ни один имеющийся телескоп не может их разрешить. В фокальной плоскости телескопа звездный свет дает дифракционную картину, которая неотличима от той, которую давал бы свет от точечного источника, дифрагировавший на апертуре телескопа и деградировавший при прохождении через атмосферу Земли.
Иллюстрация понятия объема когерентности. Существует множество звезд, чей угловой диаметр значительно меньше углового диаметра Бетельгейзе, так что высокая степень корреляции в свете от этих звезд имеет место на гораздо больших площадях.
В отличие от Солнца, угловой диаметр которого равен 30, указанные источники Галактики имеют угловые размеры не бо - - лее З - т - З7 и могут рассматриваться как точечные.

Таким образом, можно измерить угловой диаметр источника, постепенно увеличивая интервал между двумя отверстиями до тех пор, пока не исчезнут интерференционные полосы.
Великие противостояния Марса с 1830 г. по 2035 г. Расстояние от Земли до Марса указано в астрономических единицах (а.е. и километрах. Для наблюдателей планеты основным фактором является угловой диаметр ее диска.
Схема метода Физо - Маикельсона для определения углового расстояния между звездами или углового диаметра звезд. Итак, метод позволяет определить также и угловой диаметр источника света (ср.
Схема опытов по измерению дргаметра звезд, предложенных. Итак, метод позволяет определить также и угловой диаметр источника света (ср.
Наиболее характерным примером этого рода являются звезды, угловой диаметр которых составляет малые доли секунды.
Существует множество звезд, чей угловой диаметр значительно меньше углового диаметра Бетельгейзе, так что высокая степень корреляции в свете от этих звезд имеет место на гораздо больших площадях.
Угловой диаметр 2v центрального дифракционного пятна называют также угловым диаметром дифракционной картины.
Обработка плоских изображений участков звездного неба целесообразна при небольшом угловом диаметре машинного кадра. В этом случае проективные искажения при образовании кадра незначительно искажают положения звезд на небесной сфере. Поскольку вероятность правильной идентификации увеличивается с ростом числа изображений звезд, то малые угловые размеры машинного кадра приводят к необходимости расширять диапазон светимостей анализируемых звезд. В результате значительно увеличиваются вероятности пропуска слабосветящихся ее звезд, а низкий порог по уровню яркости приводит также к росту вероятностей ложных отметок. В конечном счете малые угловые размеры машинного кадра приводят к низкой эффективности идентификации звезды, визируемой астродатчиком космического аппарата.
Иллюстрация схемы и обозначений для формулы (James and Wolf, 1991a.| Изменения, создаваемые интерференцией в аксиальной точке PQ в спектре Планка при разных значениях d. Предполагалось, что источник находится при температуре Т 3000 К и стягивает угловой полудиаметр а х 10 - рад. в точке О. Единицы измерения на вертикальной оси произвольные (James and Wolf, 199 la. Бесселя первого рода и первого порядка, 2а - угловой диаметр, который источник стягивает в средней точке О между двумя отверстиями и d - расстояние между ними, с - скорость света в вакууме.
Вдвое большая величина, или 41, сравнима с величиной 40 5 углового диаметра кажущейся орбиты звезды, наблюдавшейся Бредли.

Если вместо двух источников (двойная звезда) мы имеем источник с угловым диаметром 8, то он дает интерференционную картину, изображенную на рис. 9.14, где заштрихована наблюдающаяся полоса, а пунктирными и сплошными линиями намечены полосы, обусловленные краями источника в отдельности; заштрихованная область дает ориентировочное представление о виде полос.
Электронные плотность Ne и темп - pa Т, солнечной атмосферы. Точно в центре Галактики расположен радиоисточник Стрелсц-А, состоящий из центрального яркого источника с угловым диаметром 3 (линейный размер, как у Андромеды 8 пс), погруженного в концептрич. Центральный источник имеет сложный спектр, содержащий нетепловую компоненту.
Размеры Солнца (или Луны) можно просто связать с расстоянием до нас, измеряя угловой диаметр.
Из этого выражения видно, что для определения Т необходимо знать только температуру поверхности Солнца и угловой диаметр Солнца 2Rc / r, видимый с Земли. Этот диаметр равен 0 01 радиана, а температура поверхности Солнца составляет примерно 6000 К.
Из этого выражения видно, что для определения Т необходимо знать только температуру поверхности Солнца и угловой диаметр Солнца 2Rc / r, видимый с Земли. Этот диаметр равен 0 01 радиана, а температура поверхности Солнца составляет примерно 6000 К - По формуле (7.5) находим Г 300 К.
Юпитера н Сатурна в телескоп с сильным увеличением видны в виде дисков, что позволило измерить их угловые диаметры, а затем вычислить и линейные их значения.
Гримальди описал наблюденное им явление чередования света и тени при освещении двух рядом расположенных щелей светом Солнца (угловой диаметр Солнца равен 31 - 0 01 рад.
Mj и М2) диаметром 1 56м и с переменной базой до 14м был использован впервые для измерения углового диаметра Сириуса.
Он отмечает, что поскольку послеобраз локализуется на переднем крае фона, на котором он наблюдается, и поскольку видимый угловой диаметр его сохраняется, обычно он значительно меняет размеры в процессе движения. Когда фон удаляется, послеобраз также кажется более удаленным и поэтому (благодаря сохранению углового диаметра) значительно увеличившимся в размерах. При приближении фона происходит обратное. Колебания размеров могут достигать большого значения.
Гелиометры, которые состоят из телескопа, объектив которого разделен вдоль диаметра, и две половины могут двигаться; они используются для измерения углового диаметра Солнца и углового расстояния между двумя небесными телами.

Читателю может показаться непонятным, почему звездный интерферометр Физо, в котором используется только часть апертуры телескопа, оказывается более подходящим для измерения углового диаметра удаленного объекта, нежели методы, использующие полную апертуру. Дело в том, что нужно учитывать эффекты случайных пространственных и временных флуктуации в земной атмосфере (видение через атмосферу), о чем подробно говорится в гл.
Простейшим возможным применением звездного интерферометра Майкельсона является определение того интервала s0, при котором интерференционные полосы начинают исчезать, и, следовательно, углового диаметра удаленного источника.
Кривая видности и радиальное распределение радиояркости по диску Солнца (стрелкой отмечен край Солнца в оптике. Во время появления в 1946 г. большого солнечного пятна, когда излучение Солнца существенно возросло, Райл и Вонберг воспользовались своим прибором для определения углового диаметра радиоисточника на Солнце. Для различных расстояний между антеннами они измерили отношение максимума к минимуму лепестков, образующих интерференционную кривую. На основе этих результатов они заключили, что угловой диаметр источника составляет 1 (У. Так как это значение существенно не превышало диаметр визуально наблюдаемого солнечного пятна, они заключили, что радиоисточник относится к визуальному пятну или по крайней мере связан с ним.
Распределение интенсивности в интерференционных кольцах. В случае стеклянной пластинки толщиной 0 5 мм с показателем преломления п 1 5 первое светлое кольцо имеет угловой диаметр 21, в 8 раз превышающий угловой диаметр Солнца. Можно отметить некоторые различия между этими кольцами и кольцами, локализованными на бесконечности, которые наблюдаются в интерферометре Майкельсона.
В литературе описаны также разрядные трубки, сконструированные специально для возбуждения спектров веществ, имеющихся в очень малых количествах , и светосильные разрядные трубки с большим угловым диаметром окна для наблюдения. Для обслуживания разрядной трубки используется несложная вакуумная установка, состоящая из ротационного форвакуумного и диффузионного ртутного или масляного насосов (при форвакуумном насосе, дающем разряжение до 10 - 3 мм Hg, применение диффузионного насоса не обязательно), разрядной трубки, манометра (обычно U-образный масляный или термопарный вакуумметр) и баллона с газом. Кроме того, очень часто употребляется непрерывная очистка газа, которую обеспечивает специальная система циркуляции.
Прнзма обладает свойством давать искаженное изображение бесконечно удаленных предметов; угловой диаметр предмета в направлении, параллельном ребру призмы, естественно, не меняется, если только предмет изображается лучами, параллельными плоскости главного сечения призмы; но угловой диаметр в направлении, перпендикулярном ребру, может изменяться. Пусть dij (рис. VII.4) - угол, под которым виден бесконечно удаленный предмет; определим, под каким углом di 2 тот же предмет будет виден после призмы.
Создание когерентно-оптической установки в институте было связано с попыткой применить идею накопления сигнала для определения фигуры Меркурия путем анализа изображений, полученных во время прохождения Меркурия по диску Солнца 9 мая 1970 г. Как известно, при наблюдении астрономических объектов в телескоп неоднородности земной атмосферы обычно не позволяют достичь разрешения лучше I-2, даже если дифракционное разрешение телескопа намного лучше. Угловой диаметр Меркурия при наблюдении с Земли составляет около 10, поэтому, чтобы заметить отклонение формы диска Меркурия от круга, меньшее 10 %, необходимо преодолеть мешающее влияние земной атмосферы.
Следует обратить внимание на убывание амплитуды в случае протяженного источника. Угловой диаметр ш связан с величиной Р соотношением ш P / (V2d) / 2, где К - длина волны, ad - расстояние до Луны: v пропорционально времени, v 0 соответствует геометрической теин; / о - относительная плотность потока иа краю геометрической теин. Наблюдавшаяся 5 августа 1962 г. дифракционная картина ЗС 273 иа частоте 410 Мгц приведена иа рис. 3, в. Иммерсионная дифракционная картина от 26 октября 1962 г. иа частоте 1420 Мгц воспроизведена иа рис. 3, г. Видно, что ЗС 273 разрешается иа точечный источник и протяженную область.
Зная расстояние до Бетельгейзе, рассчитанное по параллаксу, можно найти линейный диаметр звезды. Таким способом были измерены угловые диаметры не - скольких звезд. Все они, подобно Бетельгейзе, гиганты, во много раз превосходящие Солнце. Подавляющее большинство звезд мало отличается по своему диаметру от Солнца. Постройка интерферометра с такой базой (расстоянием между внешними зеркалами) представляет собой крайне сложную техническую задачу. Кроме того, при большой базе наблюдения осложняются турбулентностью атмосферы, хотя на работе интерферометра это сказывается меньше, чем при наблюдении в телескоп. Изменения показателя преломления воздуха перед зеркалами влияют на разность фаз лучей и лишь смещают интерференционную картину, не сказываясь на ее видности, так что полосы остаются различимыми, если эти изменения происходят медленно.
В табл. 2 - 20 представлены данные об угловых размерах Солнца. Как следует из этой таблицы, средний угловой диаметр Солнца применительно к орбитальным космическим аппаратам можно принять равным 32, телесный угол диска Солнца при этом составляет примерно 7 - 10 - 5 ср.
Такой концентратор применяется для повышения температуры в рабочей зоне путем увеличения плотности падающей на него солнечной энергии. При этом участки кривой определяются величиной углового диаметра солнца, а скругления у точек а и с - неравномерностью яркости солнечного диска.
Здесь пора вспомнить, что пока мы имели дело, в сущности, лишь с наклонами фронтов парциальных плоских волн; с учетом же дифракции расходимость каждой из них вовсе не является бесконечно малой и равна 20Д / D. По этой причине следить за процессом уменьшения угловых диаметров пятен имеет смысл лишь до тех пор, пока они не сравниваются с дифракционной шириной расходимости. На последующих обходах реальная картина распределения уже не меняется, причем убыль света из дифракционного керна за счет светорассеяния компенсируется поступлением за счет сжатия пятен, образовавшихся на предыдущих обходах.
Звездный интерферометр Майкельсона позволяет определять не только угловое расстояние между компонентами двойных звезд, но и угловые диаметры не слишком удаленных одиночных звезд. Первой звездой, у которой Майкельсону удалось измерить угловой диаметр, была Бетельгейзе, относящаяся к так называемым красным гигантам.

Мййкельсона позволяет определять не только угловое расстояние между компонентами двойных звезд, но и угловые диаметры не слишком удаленных одиночных звезд. Первой звездой, у которой Майкель-сону удалось измерить угловой диаметр, была Бетельгейзе, относящаяся к так называемым красным гигантам.

П. П. Добронравин

В начале 1610 г. Галилей навел на небо только что построенный им телескоп. В первые же ночи наблюдений он увидел много интересного: увидел, что Луна имеет горы и равнины, что планеты имеют заметные диски, открыл четырех спутников Юпитера, смог различить фазы Меркурия и Венеры, подобные фазам Луны, а на дисках Юпитера и Марса мог заметить даже некоторые детали. Но, направив телескоп на звезды, Галилей, вероятно, был несколько разочарован. Правда, звезды в телескоп были видны более яркими, их стало больше, но каждая звезда осталась такой же точкой, как была видна глазом, и даже наоборот: яркие звезды стали как бы меньше, они потеряли те лучи, которые окружали их при рассматривании невооруженным глазом.

Обсерватория в Барселоне.

Рис. 1. Дифракция волн на воде. Волны огибают препятствие.

Рис. 3. Простейший звездный интерферометр-телескоп, на объектив которого одета крышка с двумя отверстиями.

Рис. 4. Ход лучей в 6-метровом звездном интерферометре.

Рис 5. Большой телескоп обсерватории Моунт-Вильсон.

Рис. 6, 2,5-метровое зеркало обсерватории Моунт-Вильсон.

Рис. 7. Вид дифракционного диска звезды и полос на нем при разных расстояниях между зеркалами интерферометра. Полосы слабее всего видны на средних изображениях, когда расстояние между зеркалами близко к тому, которое соответствует видимому диаметру звезды

Рис. 8. Расположение зеркал в 15-метровом звездном интерферометре.

Рис. 9. Сравнительная величина диаметров некоторых звезд и орбит Земли и Марса.

Наука и жизнь // Иллюстрации

Рис. 10. Обсерватория Моунт-Вильсон.

С тех пор прошло 300 лет. Современные телескопы неизмеримо превосходят и по величине и по качеству оптики первый телескоп Галилея, однако до сих пор никто не видел в телескоп диск звезды. Правда, звезда при рассматривании в телескоп, особенно при сильном увеличении, кажется кружочком, но диаметры этих кружочков одинаковы для всех звезд, чего не могло бы быть, если бы мы видели реальный диск звезды, - ведь звезды различны по величине и находятся на различных расстояниях от нас. К тому же при увеличении диаметра объектива телескопа диаметр этих кружочков уменьшается, звезды становятся ярче, но меньше.

В оптике доказывается, что видимые нами диски звезд ничего общего с действительными размерами звезд не имеют и являются следствием самой природы света, получаются вследствие «дифракции» света. Границу видимости в телескоп ставит сам свет.

Но, как часто бывает в науке, те же самые свойства света, умело использованные, дали возможность измерить действительные диаметры звезд.

Немного о свойствах света

Электромагнитная теория света учит, что световой луч можно рассматривать как совокупность электромагнитных колебаний - волн, распространяющихся в пространстве с колоссальной скоростью - 300 000 км/сек. Колебания имеют определенную периодичность во времени и в пространстве. Это значит, во-первых, что они совершаются с определенной частотой - порядка 600 биллионов раз в секунду для видимого света, во-вторых. что имеются точки вдоль луча на некотором определенном расстоянии друг от друга, которые находятся в одинаковом состоянии. Расстояние между двумя такими точками называется длиной волны и для видимого света составляет около 0,0005 мм. Частота и длина волны определяют цвет луча.

Чтобы лучше понять дальнейшие явления, представим себе волны на поверхности воды. Они бьют о берег определенное число раз в минуту, - это их частота; гребень за гребнем идет на некотором постоянном расстояния,- это длина волны. И так же, как посредине между двумя гребнями на воде лежит впадина, - между двумя точками луча, разделенными расстоянием в одну длину волны, расположится точка, отклонение которой от состояния равновесия будет противоположно отклонению двух первых точек. Принято говорить, что две точки на расстоянии длины волны находятся в одинаковых фазах, а на расстоянии полуволны - в противоположных фазах, как гребень и впадина волн на воде (фазой называется величина, характеризующая состояние колеблющейся точки в данный момент). Нужно помнить, что сходство снеговых воли и волн на воде относится лишь к закономерностям, определяющим то и другое явление, и не пытаться представать себе световой луч как механическое «дрожание» какого-то вещества, - такое расширение аналогии было незаконно и неверно.

Если на пути водяных воли лежит какое-нибудь препятствие, например камень, то можно заметить (рис. 1), что волны как бы огибают его края и заходят за камень. То же происходит и со световыми волнами. Встречая какое-либо препятствие, волны света огибают его края, отклоняясь от прямолинейного распространения; однако, так как величина препятствия всегда во много раз больше длины волны, заметить эти «загнувшиеся» лучи не так легко. Они и дают явление дифракции света - появление света там, где его не могло бы быть, если бы луч был геометрической прямой линией. Так, смотря в микроскоп на тень от острого края экрана, можно заметить светлые и темные полосы, в центре тени от маленького кружочка можно увидеть светлую точку, образованную световыми волнами, обогнувшими края кружка, и т. д.

Дифракция происходит и с лучами света звезды, входящими в объектив телескопа. Крайние лучи пучка испытывают отклонение («загибание») на краю оправы объектива и дают в фокусе телескопа маленький диск, тем меньший, чем больше диаметр объектива при данном его фокусном расстоянии. Следовательно, если источник света даже геометрическая точка в полном смысле слова, то телескоп из-за дифракции всегда покажет его в виде маленького кружочка. И эти «дифракционные диски» не дают возможности видеть действительные диски звезд.

Второе явление, существенное для нас,- интерференция света. Представим себе, что в берег бьют две системы волн равной силы и одинаковой частоты, например волны, разбегающиеся от двух орошенных в воду камней. В некоторые точки берега гребни обеих волн будут приходить одновременно, волны сложатся, и колебание воды будет сильным; в другие, наоборот, гребень одной волны будет приходить одновременно с впадиной другой, волны уничтожат друг друга, и вода останется спокойной. В промежуточных точках волны будут в разной степени усиливаться и ослабляться.

То же явление, только более осложненное, будет происходить и с световыми волнами. При некоторых определенных условиях, освещая белый экран двумя лучами одного и того же цвета, можно получить «интерференцию» света. В тех точках, где колебания приходят в одинаковых фазах, они должны складываться, и яркость света повышаться; в других точках экрана, где волны обоих лучей приходят в противоположных фазах, с разностью в полволны, они взаимно уничтожатся, и два луча, сложившись, дадут темноту.

Такой опыт сделал около 1820 г. французский физик Френель. Он поставил стеклянную призму Р (рис. 2) с очень тупым углом между источником света S и белым экраном Е. На экране вместо ровного освещения получилась картина, состоящая из чередующихся светлых и темных полос. Произошло это потому, что призма разделила пучок лучей на два одинаковых по составу пучка, как бы идущих от двух воображаемых источников, S1 и S2. Точка а находится на равном расстоянии от обоих этих источников, «гребни» и «впадины» (говоря чисто условно, пользуясь аналогией с волнами воды) в обоих лучах совпадают, колебания складываются и усиливают друг друга; будет наблюдаться яркий свет. Иначе обстоит дело в точке b: она на половину длины волны ближе к S2, чем к S1, колебания приходят в противоположных фазах, «гребни», накладываясь на «впадины», взаимно уничтожаются, колебаний нет, и наблюдается темная полоса. Рассуждая так же, найдем, что по обе стороны светлой центральной полосы а будут чередоваться светлые и темные полосы, что и подтверждается на опыте.

Так будет наблюдаться явление в том случае, если все лучи источника света имеют одну и ту же длину волны. Обычный белый свет состоит из смеси лучей различных цветов, т. е. с разными длинами волн. Лучи каждого цвета дадут свою систему светлых и темных полос, системы эти наложатся друг на друга, и на экране по обе стороны от центральной белой полосы расположатся полосы, окрашенные в разные цвета.

Каковы же диаметры звезд?

Представьте себе, что вы смотрите на шарик диаметром в 1 мм с расстояния 206 м. Рассмотреть его, конечно, не удается, диаметр шарика будет виден под углом в одну секунду дуги.

Современные большие телескопы могут при большом увеличении показать отдельно две светящиеся точки на угловом расстоянии в десятые доли секунды. Можно рассчитать, что диаметр дифракционного диска звезды у наибольшего в мире 2,5-метрового рефлектора (отражательный телескоп с диаметром главного зеркала 2,5 м), находящегося на обсерватории Моунт-Вильсон (США, Калифорния) равен теоретически О’’45. И так как даже в этот телескоп все звезды кажутся одинаковыми, - реальные угловые диски их, очевидно, еще меньше.

Угловой диаметр звезд можно оценить косвенными методами. Есть звезды, меняющие свою яркость строго периодически, вследствие того что эти звезды двойные и более яркая затмевается менее яркий спутником при каждом обороте пары вокруг общего центра тяжести. Исследование закона изменения яркости этих звезд в соединении с спектроскопическими наблюдениями скоростей их движения дает возможность определить линейные размеры обеих звезд, а отсюда, если известно расстояние до звезды, - вычислить ее угловой диаметр.

Исследуя распределение энергии в звездном спектре, можно узнать температуру звезды; измерив полное излучение, приходящее от звезды на Землю, можно вычислить угол, под которым виден диаметр звезды, даже и не зная его расстояния.

Оказалось, что видимые диаметры даже самых больших звезд всего около 0",05,- того же размера, что и дифракционный диск у 2,5-метрового рефлектора. Поэтому-то даже в величайший телескоп мира все звезды кажутся одинаковыми. Лишь с новым гигантским телескопом, который строится сейчас в Америке и будет иметь главное зеркало диаметром 5 м, можно будет увидеть, что некоторые звезды больше других, увидеть реальные диски звезд.

Дифракционный диск этого телескопа будет иметь диаметр 0",022.

Но еще 70 лет тому назад, в 1868 г., Физо указал на возможность применения явления интерференции света к измерению диаметров звезд. Основная идея метода очень проста. Представим себе, что перед призмой Френеля (рис. 2) расположен не один, а два источника света. Каждый из них дает свою систему светлых и темных полос на экране. Передвигая источники света, можно расположить их так, что светлые полосы от одного источника лягут на темные полосы от другого, и наоборот. На экране получится ровное освещение. Зная данные взятой для опыта установки, можно вычислить угол, под которым видно из центра экрана расстояние между источниками в момент исчезновения полос.

Подобным образом можно поступить и с телескопом. Если на объектив телескопа одеть крышку с двумя отверстиями (рис. 3), то лучи света, пройдя объектив, дадут прежде всего обычное изображение звезды, дифракционный диск. Но, кроме того лучи идущие от обоих отверстий, встречаясь в главном фокусе телескопа, будут интерферировать, как лучи за призмой Френеля и дадут полосы на диске звезды. Закрыв одно из отверстий, увидим, что диск останется, но полосы на нем исчезнут. Расстояния между полосами тем меньше, чем дальше друг от друга отверстия в диафрагме. Такой прибор называется звездным интерферометром.

Предположим теперь, что звезда двойная, т. е. на самом деле там две, расположенные настолько близко, что они даже в телескоп видны как одна. Каждая из звезд даст свою систему полос на диске; системы эти наложатся одна на другую, Меняя расстояние между отверстиями в диафрагме, можно подобрать его так, что полосы на диске перестанут быть видимыми: светлые полосы, даваемые одной звездой, совпадут с темными, даваемыми другой, и диск будет освещен равномерно. Зная расстояние между отверстиями в диафрагме и фокусное расстояние телескопа, можно будет вычислить угол, под которым видно расстояние между составляющими двойной звезды, хотя различить их отдельно и не удастся.

Физо сделал и следующий шаг. Рассуждения его, на самом деле несколько более сложные, можно упрощенно изложить так: если звезда не точка, а маленький диск, то ее можно представить себе как бы состоящей из двух «полудисков» и рассматривать далее каждый из них как самостоятельный источник света, дающий свою систему полос. Тогда, меняя расстояние между отверстиями в диафрагме телескопа, можно добиться исчезновения полос, равномерного освещения дифракционного диска звезды. По расстоянию отверстий в диафрагме можно вычислить расстояние между «центрами тяжести» обоих «полудисков», а отсюда по формулам геометрии найти диаметр звезды.

Идеи Физо были использованы Стефеном.

На 80-сантиметровом рефракторе обсерватории в Марселе он наблюдал интерференционные полосы от многих звезд, но ни разу не смог добиться их исчезновения. Затем работы Физо и Стефена были забыты.

Идеи эти высказал снова в 1890 г. известный американский физик Майкельсон. Пользуясь различными телескопами, он показал, что с помощью интерференции можно измерять расстояния между составляющими очень тесных двойных звезд, диаметры спутников Юпитера и т. д. Результаты хорошо совпадали с результатами обычных измерений точным микрометром. Однако астрономы не сразу обратили внимание на результаты Майкельсона. Лишь около 1920 г. эти опыты были повторены на обсерватории Моунт-Вильсон, сначала на полутораметровом, а затем на 2,5-метровом рефлекторах. Удалось измерить расстояния в некоторых очень тесных звездных парах, например расстояние между составляющими двойной звезды Капеллы, равное всего 0"",045.

Но обнаружилось, что даже при расположении отверстий диафрагмы на краях 2,5-метрового зеркала полосы на дифракционных дисках звезд не исчезают, - расстояние это еще слишком мало. Объектива или зеркала диаметром более 2,5 м тогда не существовало, нет еще и сейчас, и, казалось бы, дальше идти некуда.

Однако Майкельсон чрезвычайно просто и остроумно решил задачу, как бы искусственно увеличив размеры 2,5-метрового зеркала еще в 2,5 раза. На рис. 4 показан ход лучей в звездном интерферометре Майкельсона, расположенном на главном телескопе обсерватории Моунт-Вильсон. На стальной балке длиною 6 м, укрепленной на конце рефлектора, расположены два плоских зеркала 1 под углом 45° к оси телескопа. Лучи от этих зеркал идут к двум плоским зеркалам 2, главному вогнутому зеркалу рефлектора 3 и после отражения от выпуклого зеркала 4 и плоского 5 в окуляр 6. Встречаясь в фокусе телескопа, лучи дают ту же картину, что и при двух отверстиях в крышке на объективе, т. е. дифракционный диск и систему полос на нем. Расстояние между зеркалами может меняться от 2,5 до 6 м.

13 декабря 1920 г. давно поставленная цель была достигнута. Первой звездой, для которой удалось добиться исчезновения полос (рис. 7) при расстоянии между зеркалами интерферометра в 3 м, была альфа Ориона (Бетельгейзе). Для ее диаметра получилась величина 0",047, в хорошем согласия с теоретическими подсчетами. Тем же интерферометром были измерены видимые диаметры еще нескольких звезд.

Но даже расстояние 6 м между зеркалами интерферометра слишком мало для огромного большинства звезд. Так как для измерения диаметров звезд не важно, чтобы главное зеркало телескопа имело максимальный диаметр, а существенно расстояние между подвижными зеркалами, - в 1930 г. был построен новый интерферометр с главным зеркалом диаметром 100 см и балкой длиной 15 м (рис. 8). Этот интерферометр уже является не насадкой на телескоп, а вполне самостоятельным инструментом. С ним при помощи улучшенной методики наблюдений (наблюдалось не только расстояние, при котором полосы исчезают, но и оценивалась степень видимости полос при других расстояниях между зеркалами путем сравнения с искусственными полосами) удалось измерить диаметры довольно большого числа звезд. Часть результатов этих измерений приведена в табличке. Можно заметить, что согласие между наблюденными и вычисленными теоретически диаметрами звезд очень хорошее.

Разумеется, что сейчас могут быть измерены диаметры лишь наиболее близких к нам и очень больших звезд, - диаметры остальных звезд значительно меньше и недоступны даже 15-метровому интерферометру. В последней строке таблицы приведена Вега, одна из наиболее ярких звезд нашего северного неба. Чтобы измерить ее диаметр, пришлось бы раздвинуть зеркала интерферометра на 50 м.

В последнем столбце таблички приведены действительные диаметры звезд, причем диаметр Солнца принят за единицу. Действительные размеры звезды легко вычислить если известен ее угловой диаметр и расстояние до нее. Из этого столбца видно, как огромны некоторые звезды. Если бы, например, Антарес оказался на месте нашего Солнца, то не только орбита Земли, но и орбита Марса лежала бы внутри него (рис. 9); Марс, среднее расстояние которого от Солнца равно 228 млн. км, двигался бы внутри Антареса. Зная размеры Антареса и его массу, можно вычислить среднюю плотность его вещества. И оказывается что плотность эта в три миллиона раз меньше плотности вещества нашего Солнца.