Кондиционер на солнечной энергии своими руками. Кондиционер на солнечной батарее своими руками. Виды солнечных кондиционеров и их устройство

Каждый год с приближением лета увеличивается нагрузка на электрические сети. Летнюю жару плохо переносят не только люди, но и техника. Начинает сбоить электроника, все чаще включаются вентиляторы, холодильники работают почти непрерывно, открываются настежь окна, устраиваются сквозняки. И хотя это мало помогает, небольшой ветерок в помещении создает видимость более комфортной температуры, легче переносится жара. В этот период резко увеличивается спрос на различные установки микроклимата – наружные и напольные кондиционеры, вентиляторы с системой охлаждения воздуха.

Чтобы обеспечить комфортную температуру в квартире, достаточно одного кондиционера средней мощности. В офисных помещениях, где большие площади и объемы комнат, устанавливают по несколько кондиционеров на каждую комнату. Естественно, что установка большого количества этих приборов влечет за собой значительное увеличение нагрузки на электрическую сеть. Да и квартирный кондиционер, работающий практически круглосуточно, достаточно нагружает сеть. К тому же, при его мощности в 2500 ватт значительно увеличиваются расходы за электроэнергию.

Кроме стационарных кондиционеров, есть еще и такие, которые устанавливаются в автомобилях, жилых домиках на колесах, на катерах. Во время работы эти кондиционеры забирают часть мощности двигателей или потребляют энергию аккумуляторов. Чтобы снизить нагрузку на электрические сети в пиковые периоды, чтобы не допускать преждевременного разряда аккумуляторов, но вместе с тем обеспечить комфортные температурные условия, многие фирмы начали выпускать кондиционеры на солнечных батареях. В таких устройствах гелиевые панели либо представляют собой составную часть неразборной конструкции, либо устанавливаются отдельно, соединяясь с кондиционером специальным силовым кабелем.

Кондиционеры испарительного типа

Принцип работы кондиционеров испарительного типа предельно прост. В конструкцию входит открытая емкость, наполняемая водой. Вертикально устанавливается воздушный фильтр, представляющий собой несколько слоев пористых прокладок. Вода из емкости небольшим насосом подается в распыляющее устройство, установленное над воздушным фильтром. Из распыляющего устройства вода, разделенная на мелкие капли, попадает на воздушный фильтр, через который вентилятором подается теплый воздух. Этот воздух, проходя через прокладки фильтра, захватывает с собой капельки воды, которые очень быстро, практически мгновенно, испаряются, так как площадь их поверхности и объем чрезвычайно малы. При этом воздух, проходящий через фильтр, не только охлаждается, но и увлажняется.

К преимуществам такого кондиционера следует отнести его невысокую стоимость, простоту эксплуатации, небольшое энергопотребление, очищение и увлажнение воздуха. К недостаткам следует отнести необходимость периодического пополнения запасов воды, которая будет расходоваться на увлажнение прокладок фильтра. Недостатком прибора является также и то, что он малоэффективен в условиях повышенной влажности.

Схема кондиционера испарительного типа

Кондиционер испарительного типа Diablo Solar

Фирма Mountain Concepts выпустила Diablo Solar – небольшой кондиционер испарительного типа, работающий от солнечных батарей. Он отличается не только высокой производительностью, но и своей экономичностью. Кондиционер работает от гелиевых панелей, которые обеспечивают напряжение питания 24 вольт постоянного тока. Наличие аккумулятора позволяет использовать устройство и в темное время суток. Несмотря на свои небольшие размеры и мощность, этот кондиционер обеспечивает создание комфортного микроклимата в помещениях площадью до 30 квадратных метров. Его максимальная производительность достигает 3000 кубометров воздуха в час.


Diablo Solar с блоком солнечной батареи

В приборе предусмотрена система дистанционного управления, автоматический воздушный переключатель, установка времени срабатывания и выключения. Хорошо сбалансированный вентилятор работает практически бесшумно. Температура влажного охлажденного воздуха может быть на 8°С – 12°С ниже температуры воздуха, подаваемого снаружи.


Основные технические данные:

  • Производительность – 3000 м³/час;
  • Регулировка – 3 ступени;
  • Емкость бака – 20 литров;
  • Расход воды – 3 л/час;
  • Напряжение – 24 В постоянного тока;
  • Мощность – 80 ватт;
  • Размеры помещения – 30 м²;
  • Вес – 20 кг;
  • Размеры 560+350х690 мм

В комплект поставки входят: модуль солнечных батарей мощностью 90 ватт, два аккумулятора по 35 ампер-часов, инвертор, контроллер заряда, кабель – 3 метра, соединительные разъемы.

Стоимость комплекта – до 25000 рублей.

Кондиционеры компрессионного типа

Принцип работы таких кондиционеров точно такой же, как и у холодильников. И состоят эти кондиционеры из таких же элементов – испарителя, конденсатора, компрессора. В качестве хладагента используется легкокипящий фреон. Именно от него зависит охлаждение воздуха в помещении. Как и у любой другой жидкости, температура кипения фреона находится в прямой зависимости от давления. Чем ниже давление, тем ниже температура кипения.

Жидкий фреон вскипает в испарителе, где давление низкое настолько, что парообразование происходит при температуре от +10°С до +18°С. При этом происходит отбор тепла у входящего воздуха. Нагретый парообразный фреон поступает в компрессор. Там давление повышенное, а следовательно, и температура кипения выше. Здесь фреоновый пар конденсируется в жидкость и возвращается в испаритель. Цикл повторяется бесконечно.


Схема кондиционера компрессионного типа

Вентилятор выбрасывает теплый воздух наружу. Внутри помещения воздух прогоняется через испаритель, выходя из кондиционера уже охлажденным до заданной температуры.

Гибридный кондиционер на солнечных батареях SUNCHI ACDC 12

Компания Jiangsu Sunchi New Energy Co., Ltd. выпускает мощный гибридный кондиционер, работающий на солнечных батареях. Этот кондиционер компрессионного типа является универсальным прибором и может применяться для создания комфортного микроклимата в квартирах, офисах, производственных помещениях. Он может работать как на охлаждение, так и на подогрев воздуха. Тепловая мощность на охлаждение составляет 11000 BTU/h, что в переводе на привычные для нас единицы измерения равно примерно мощности в 3.2 киловатт, в то время, как тепловая мощность на обогрев составляет 12000 BTU/h или 3.5 киловатт. Этой мощности хватает для того, чтобы обслуживать помещение площадью до 75 квадратных метров.


Кондиционер на солнечных батареях SUNCHI ACDC 12

В комплект поставки входит сплит-система, три солнечные панели мощностью по 250 ватт каждая, инвертор, контроллер заряда аккумуляторов, аккумуляторная батарея (по желанию покупателя), соединительные кабели, трубопроводы, пульт дистанционного управления.

Основные технические характеристики:

  • Электропитание – 220 вольт 50 Гц;
  • Мощность одной солнечной батареи – 250 ватт;
  • Напряжение постоянного тока – 30 вольт;
  • Тепловая мощность на охлаждение –11000 BTU/h (3.2 кВт);
  • Мощность в режиме максимального охлаждения – 920 ватт;
  • Номинальная мощность в режиме охлаждения – 705 ватт;
  • Тепловая мощность на обогрев –12000 BTU/h (3.5 кВт);
  • Мощность в режиме максимального обогрева – 1025 ватт;
  • Номинальная мощность в режиме обогрева – 836 ватт;
  • Хладагент – фреон R410A;
  • Размеры внутреннего блока – 902х165х284 мм;
  • Размеры наружного блока – 762х284х590 мм;
  • Трехскоростной двигатель Panasonic – 1250/900/700 об/мин;
  • Стоимость – 65000 рублей (без аккумуляторов).

Кроме стационарных кондиционеров на солнечных батареях, различные фирмы выпускают мобильные устройства. Например, для автомобильных жилых домиков.


Дом на колесах с солнечными батареями

Солнечные батареи, установленные на крыше, обеспечивают энергией все электрооборудование, включая кондиционер, который создает благоприятную атмосферу в салоне, не расходуя при этом энергию аккумуляторов или генератора автомобиля.

Существует несколько видов кондиционеров, тем или иным образом использующих солнечную энергию, чтобы снизить или полностью отказаться от потребления электроэнергии из сети. О принципе работы таких устройств, получивших название «солнечные кондиционеры», и пойдет речь в этой статье.

Несмотря на некоторую абсурдность понятия «солнечный кондиционер» (традиционно солнце ассоциируется с теплом, а кондиционер - с холодом), оно вполне объяснимо, ведь именно в солнечный день потребность в кондиционировании наиболее велика. Таким образом, привязать работу кондиционера к солнцу было бы весьма логично: есть солнце - нужно охлаждение, нет - нет и потребности в холоде.

Принципиально солнечные кондиционеры можно разделить на две группы. Представители первой, активные солнечные кондиционеры, используют солнечную энергию напрямую - как тепловую. В свою очередь, пассивные солнечные кондиционеры используют энергию Cолнца, преобразованную, как правило, в электричество.

Солнечные кондиционеры с влагопоглотителями

Обычно около 30 % полезной холодильной мощности кондиционера (а в некоторых случаях до 50 %) тратится впустую - на образование конденсата, который затем просто сливается в канализацию.

Избежать появления конденсата, которое происходит из-за того, что температура испарителя ниже точки росы поступающего из помещения воздуха, можно, либо повысив температуру испарителя, либо понизив точку росы. Первый способ приводит к менее эффективному охлаждению воздуха, а потому требует увеличения его расхода. К тому же лишнюю влагу из воздуха все равно нужно удалять.

Второй способ - понижение точки росы воздуха в помещении - можно реализовать несколькими путями, и один из них - предварительно осушить подаваемый в кондиционер воздух.

Солнечные кондиционеры с влагопоглотителями (десикантами) относятся к активным солнечным кондиционерам и имеют повышенную энергоэффективность за счет невыпадения конденсата. Влага удаляется из потока воздуха влагопоглотителями перед испарителем. Таким образом, в испаритель попадает осушенная воздушная масса с точкой росы ниже температуры испарителя, чем и обеспечивается гарантия невыпадения конденсата.

Влагопоглотитель (это может быть, например, силикагель) вращается на диске. Поглотив влагу из внутреннего воздуха, десикант диском выносится на открытое для лучей солнца пространство, где выпаривается впитанная влага. Тем самым влагопоглотитель регенерируется, и диск возвращает его к контакту с внутренним воздухом.

Дополнительно отметим, что при описанной выше схеме в солнечные дни режим осушения воздуха не требует включения парокомпрессионного холодильного цикла кондиционера, что ведет к существенному энергосбережению: электроэнергия затрачивается только на вращение диска с влагопоглотителем.

Другим примером активных солнечных холодильных машин являются абсорбционные чиллеры, использующие солнечное тепло. Как известно, в абсорбционных машинах рабочим веществом является раствор из двух, иногда трех компонентов. Наиболее распространены бинарные растворы из поглотителя (абсорбента) и хладагента, отвечающие двум главным требованиям: высокая растворимость хладагента в абсорбенте и значительно более высокая температура кипения абсорбента по сравнению с хладагентом.

Для получения холода в абсорбционных холодильных машинах требуется тепловая энергия (как правило, используется бросовое тепло предприятий), которая подводится к генератору, где из рабочего вещества выкипает практически чистый хладагент, ведь его температура кипения гораздо ниже, чем у абсорбента.

Несмотря на то что абсорбционные чиллеры - весьма перспективная область развития холодильной техники, их применение ограничивается, как правило, промышленными объектами, так как только там есть достаточное количество бросового тепла.

В то же время в абсорбционных солнечных кондиционерах тепловую энергию, подводимую к генератору, получают от Cолнца. Это позволяет расширить область применения абсорбционных машин и использовать их не только в промышленном секторе. Учитывая, что тепловая энергия, получаемая от Cолнца, бесплатна, экономичность подобных решений в эксплуатации очевидна.

Фотоэлектрический солнечный кондиционер

В принцип работы фотоэлектрических солнечных кондиционеров заложено, пожалуй, наиболее очевидное использование солнечной энергии: питание кондиционера от солнечной батареи.

Действительно, о солнечных электростанциях, использующих возобновляемый источник энергии - энергию Cолнца, известно достаточно давно, и сказано о них очень многое. Ряд проектов уже воплощен в жизнь и успешно эксплуатируется в различных странах.

В более скромных масштабах солнечные батареи используются для энергоснабжения небольших объектов, например, коттеджей: от установленных, как правило, на кровле фотоэлектрических панелей получают электричество, расходуемое на бытовые нужды.

Еще реже от солнечных батарей предлагается запитывать различное оборудование. Если учесть, что в отличие от другой бытовой техники кондиционеры используются именно в солнечные дни, то было бы логично подключить к солнечной батарее именно кондиционер.

Подобные решения уже предлагаются многими зарубежными производителями оборудования для кондиционирования воздуха, например, Sanyo, Mitsubishi, LG. Однако очевидно, что кондиционер, будучи энергоемким оборудованием, потребует размещения достаточно большого количества фотоэлектрических панелей. Поэтому разные производители используют солнечные батареи по-разному: для запитывания только вентиляторов, для частичного электроснабжения кондиционера или для его полного обеспечения электроэнергией.

В любом случае к кондиционеру подводится силовой кабель от электросети, однако приоритет по источнику энергии отдается солнечным батареям. Например, для питания солнечных кондиционеров компаний GREE и MIDEA используется постоянный ток. В обычном режиме ток поступает от фотоэлектрических панелей, а при отсутствии солнца - через выпрямитель из электросети здания.

Однако отметим, что КПД современных фотоэлектрических панелей не превышает 25 %, что нельзя назвать эффективным преобразованием энергии. Даже несмотря на разработку комбинированных батарей на основе кристаллического кремния, КПД которых достигает 43 %, по-прежнему более половины энергии теряется в процессе ее конвертации. Именно поэтому считается, что фотоэлектрические солнечные кондиционеры уступают в эффективности, например, абсорбционным.

Экологичность как двигатель солнечного кондиционирования

Сегодня большое внимание уделяется экологичности тех или иных решений. Особо остро экологический вопрос стоит в области кондиционирования.

Пока солнечные климатические системы еще мало распространены. Однако направленность мировых усилий на снижение выбросов углекислого газа в атмосферу и рост цен на традиционные энергоносители могут стать хорошим стимулом для развития солнечной климатической техники.

Очевидно, что энергопотребление системы кондиционирования при параллельном использовании солнечной энергии снизится. Кроме того, использование тепловой энергии Cолнца может расширить область применения абсорбционных холодильных машин, работающих на безопасных рабочих жидкостях - воде или соляных растворах.

Юрий Хомутский, технический редактор журнала «МИР КЛИМАТА»

Существует несколько видов кондиционеров, тем или иным образом использующих солнечную энергию, чтобы снизить или полностью отказаться от потребления электроэнергии из сети. О принципе работы таких устройств, получивших название «солнечные кондиционеры», и пойдет речь в этой статье.

Несмотря на некоторую абсурдность понятия «солнечный кондиционер» (традиционно солнце ассоциируется с теплом, а кондиционер - с холодом), оно вполне объяснимо, ведь именно в солнечный день потребность в кондиционировании наиболее велика. Таким образом, привязать работу кондиционера к солнцу было бы весьма логично: есть солнце - нужно охлаждение, нет - нет и потребности в холоде.
Принципиально солнечные кондиционеры можно разделить на две группы.

Представители первой, активные солнечные кондиционеры, используют солнечную энергию напрямую - как тепловую. В свою очередь, пассивные солнечные кондиционеры используют энергию Cолнца, преобразованную, как правило, в электричество.


Солнечные кондиционеры с влагопоглотителями

Обычно около 30 % полезной холодильной мощности кондиционера (а в некоторых случаях до 50 %) тратится впустую - на образование конденсата, который затем просто сливается в канализацию.

Избежать появления конденсата, которое происходит из-за того, что температура испарителя ниже точки росы поступающего из помещения воздуха, можно, либо повысив температуру испарителя, либо понизив точку росы. Первый способ приводит к менее эффективному охлаждению воздуха, а потому требует увеличения его расхода. К тому же лишнюю влагу из воздуха все равно нужно удалять.

Второй способ - понижение точки росы воздуха в помещении - можно реализовать несколькими путями, и один из них - предварительно осушить подаваемый в кондиционер воздух.

Солнечные кондиционеры с влагопоглотителями (десикантами) относятся к активным солнечным кондиционерам и имеют повышенную энергоэффективность за счет невыпадения конденсата. Влага удаляется из потока воздуха влагопоглотителями перед испарителем. Таким образом, в испаритель попадает осушенная воздушная масса с точкой росы ниже температуры испарителя, чем и обеспечивается гарантия невыпадения конденсата.

Влагопоглотитель (это может быть, например, силикагель) вращается на диске. Поглотив влагу из внутреннего воздуха, десикант диском выносится на открытое для лучей солнца пространство, где выпаривается впитанная влага. Тем самым влагопоглотитель регенерируется, и диск возвращает его к контакту с внутренним воздухом.

Дополнительно отметим, что при описанной выше схеме в солнечные дни режим осушения воздуха не требует включения парокомпрессионного холодильного цикла кондиционера, что ведет к существенному энергосбережению: электроэнергия затрачивается только на вращение диска с влагопоглотителем.

Абсорбционные солнечные кондиционеры

Другим примером активных солнечных холодильных машин являются абсорбционные чиллеры, использующие солнечное тепло. Как известно, в абсорбционных машинах рабочим веществом является раствор из двух, иногда трех компонентов. Наиболее распространены бинарные растворы из поглотителя (абсорбента) и хладагента, отвечающие двум главным требованиям: высокая растворимость хладагента в абсорбенте и значительно более высокая температура кипения абсорбента по сравнению с хладагентом.

Для получения холода в абсорбционных холодильных машинах требуется тепловая энергия (как правило, используется бросовое тепло предприятий), которая подводится к генератору, где из рабочего вещества выкипает практически чистый хладагент, ведь его температура кипения гораздо ниже, чем у абсорбента.

Несмотря на то что абсорбционные чиллеры - весьма перспективная область развития холодильной техники, их применение ограничивается, как правило, промышленными объектами, так как только там есть достаточное количество бросового тепла.

В то же время в абсорбционных солнечных кондиционерах тепловую энергию, подводимую к генератору, получают от Cолнца. Это позволяет расширить область применения абсорбционных машин и использовать их не только в промышленном секторе. Учитывая, что тепловая энергия, получаемая от Cолнца, бесплатна, экономичность подобных решений в эксплуатации очевидна.

Фотоэлектрический солнечный кондиционер

В принцип работы фотоэлектрических солнечных кондиционеров заложено, пожалуй, наиболее очевидное использование солнечной энергии: питание кондиционера от солнечной батареи.

Действительно, о солнечных электростанциях, использующих возобновляемый источник энергии - энергию Cолнца, известно достаточно давно, и сказано о них очень многое. Ряд проектов уже воплощен в жизнь и успешно эксплуатируется в различных странах.

В более скромных масштабах солнечные батареи используются для энергоснабжения небольших объектов, например, коттеджей: от установленных, как правило, на кровле фотоэлектрических панелей получают электричество, расходуемое на бытовые нужды.

Еще реже от солнечных батарей предлагается запитывать различное оборудование. Если учесть, что в отличие от другой бытовой техники кондиционеры используются именно в солнечные дни, то было бы логично подключить к солнечной батарее именно кондиционер.

Подобные решения уже предлагаются многими зарубежными производителями оборудования для кондиционирования воздуха, например, Sanyo, Mitsubishi, LG. Однако очевидно, что кондиционер, будучи энергоемким оборудованием, потребует размещения достаточно большого количества фотоэлектрических панелей. Поэтому разные производители используют солнечные батареи по-разному: для запитывания только вентиляторов, для частичного электроснабжения кондиционера или для его полного обеспечения электроэнергией.

В любом случае к кондиционеру подводится силовой кабель от электросети, однако приоритет по источнику энергии отдается солнечным батареям. Например, для питания солнечных кондиционеров компаний GREE и MIDEA используется постоянный ток. В обычном режиме ток поступает от фотоэлектрических панелей, а при отсутствии солнца - через выпрямитель из электросети здания.

Однако отметим, что КПД современных фотоэлектрических панелей не превышает 25 %, что нельзя назвать эффективным преобразованием энергии. Даже несмотря на разработку комбинированных батарей на основе кристаллического кремния, КПД которых достигает 43 %, по-прежнему более половины энергии теряется в процессе ее конвертации. Именно поэтому считается, что фотоэлектрические солнечные кондиционеры уступают в эффективности, например, абсорбционным.


Экологичность как двигатель солнечного кондиционирования

Сегодня большое внимание уделяется экологичности тех или иных решений. Особо остро экологический вопрос стоит в области кондиционирования.

Пока солнечные климатические системы еще мало распространены. Однако направленность мировых усилий на снижение выбросов углекислого газа в атмосферу и рост цен на традиционные энергоносители могут стать хорошим стимулом для развития солнечной климатической техники.

Очевидно, что энергопотребление системы кондиционирования при параллельном использовании солнечной энергии снизится. Кроме того, использование тепловой энергии Cолнца может расширить область применения абсорбционных холодильных машин, работающих на безопасных рабочих жидкостях - воде или соляных растворах.

Не секрет, что температура воды родника, колодца 2 - 5°С, её и будем использовать в качестве хладагента.

В крайнем случае, можно задействовать любую, желательно проточную, воду из ручья, реки, канавы, пруда. Здесь необходимо применить фильтр соответствующий размерам частиц загрязнения (указывается в характеристиках насоса). Опять-таки, можно сделать своими руками из подходящей сетки и проволочного каркаса.

При водоснабжении из колодца, фильтр не требуется.

Патрубок подачи воды от насоса / помпы подсоединяем к испарителю.

На испаритель (радиатор) крепим электровентилятор, в нашем случае малошумящий кулер или несколько кулеров от компьютера.

Допустим, Вам повезло, вы работаете в пункте приёма цветных металлов и этих радиаторов хоть завались. Закрепите два радиатора так, чтобы поток воздуха проходил через оба, а хладагент (вода) последовательно через каждый. Это значительно увеличит КПД кондиционера, т.к. КПД напрямую зависит от площади обдуваемой поверхности испарителя.

После внимательного изучения наших рекомендаций по установке солнечных батарей , сдаём экзамен любимой тёще, либо иному врагу народа.

Получив "зачет с занесением в грудную клетку", с превеликой осторожность лезем крепить солнечную батарею.

Насос для воды и кулер с рабочим напряжением 12 вольт подключаем параллельно, непосредственно к солнечной батарее.

Примитивная схема кондиционера автоматически начинает работу с первыми лучами солнца. Что особо приятно, т.к. именно в солнечный день потребность в охлаждении возрастает.

По мере увеличения инсоляции (освещённости) скорость вращения кулера увеличивается, так же как и производительность насоса кондиционера. В результате мощность кондиционера увеличивается пропорционально инсоляции.

Поскольку вентилятор и насос начинаю работать синхронно, на поверхности испарителя не возникает точки росы и конденсата соответственно.

В указанной конструкции устанавливается насос для воды производительностью 450 литров в час, напряжение 12 вольт, ток 2 ампера (фото слева). Либо аналогичный, из наличия, но чем ниже потребляемая мощность электроэнергии на 1 литр, тем лучше.

Аналогичный расчёт желателен и при выборе кулера.

Можно использовать и штатный электровентилятор отопителя, но у него весьма значительная потребляемая мощность. Порядка 90 Вт.

Тем не менее, стандартная монокристаллическая солнечная батарея с задачей справляется, хотя КПД снижается.

Цена кондиционера на солнечной батарее сопоставима с традиционным, но избавляет от оплаты счетов за электроснабжение.

Если вспомнить двухтарифный счетчик электроэнергии, Вы потребляете собственную энергию в дневные часы, наиболее дорогую.

Пустячёк, а приятно.

Для придания кондиционеру более эстетичного вида, желательно разместить конструкцию в подобающем корпусе, либо сделать самостоятельно из подручных материалов, вписывающихся в интерьер и концепцию глобализации экономики африканских племён. :-)

Не стоит привязываться к конкретно указанным деталям, хотя они подобраны оптимально, а потребляемая мощность кондиционера составляет порядка 50 Вт и зависит от высоты подъёма водяного столба. Мы изложили только устройство кондиционера и алгоритм работы.

Предложенную схему можно врезать в приточную вентиляцию.

Добрый день. Начинаем эксперименты по использованию солнечной энергии для создания холодильного агрегата. Поскольку летом солнца много, девать его некуда. Горячее водоснабжение нас не сильно волнует. Нас интересует система кондиционирования дома на основе солнечного коллектора.

Видео блога “Одесский Инженер”

Какие части в кондиционере, работающем на солнечной энергии

Использовать в качестве холодильной машины будем аммиачный холодильник, его компрессорную часть, агрегат. Кристалл 404 – старый советский аппарат. Разобрали, сняли. Как он работает? Стоит керамический тэн, электрическая мощность 100 Ватт. При нагреве происходит реакция аммиака и воды. Разная температура кипения. Если в том месте нагреем, то получим охлаждение. Его проверял, электрически включал, работает. Поэтому, решено использовать его.

Сборка деталей коллектора для холода

Какая задача? Вытащили тэн, трубку выше-ниже, нагреть где-то до 150 градусов. Температура кипения воды – 100 градусов, тут давление, посмотрим. Даже, если 150 градусов не получится, 120-130 сможем прогреть. Используем солнечный концентратор небольшой, он остался, его размеры 1,10 на 80, 1 квадратный метр.

Пока сюда поставили нержавейку, осталась с наших экспериментов. Вместо вакуумной трубки поставили трубу. Почему? Тяжело сделать систему циркуляции с теплоносителем, при температуре 120-130 градусов. Поэтому-то будем греть железную трубу и сделаем переход чтобы тепло железной трубы передавалось на холодильный агрегат.

Оно простояло на солнце. Тут 79 градусов. Хотя солнце немножко взошло. Хотя понималось до 89. Этого маловато, нужно, скорее всего, уменьшать диаметр трубы, потери большие, нержавейка не справляется. Мощность нужна небольшая – 100 Ватт. Но температуру, желательно, хотя бы 120-130 градусов. Тут привод поворота не ставили. Слежение тоже не ставили, в общем-то оно все элементарно. Вращаем винтик и ловим фокус.

Задача передать нагрев, это тепло, температуру в холодильный агрегат.

Если это сможем физически сделать, то остается только немножко переделать гелио-систему чтобы летом она работала, как система охлаждения, центрального кондиционирования дома. Где вода в радиаторах охлаждаться. Под радиаторами поставим, наверно, небольшие вентиляторы, кулер. По возможности, конечно, сделаем фотопанель, чтобы оно было вообще энергонезависимым. Тем самым получим кондиционер, который летом работает от солнца и не зависит от электроэнергии.