Обеззараживание питьевой воды. Реферат: Современные методы обеззараживания питьевой воды Что не относится к способам обеззараживания воды

Химические или реагентные способы обеззараживания воды, основанные на добавлении к воде того или иного химического вещества в определенной дозе, имеют ряд недостатков, которые заключаются главным образом в том, что большинство из них отрицательно влияет на состав и органолептические свойства воды. Кроме того, бактерицидное действие этих веществ проявляется после определенного периода контакта и не всегда распространяется на все формы микроорганизмов. Эффективность обеззараживания в значительной мере зависит от правильного выбора дозы, в связи с чем возникает необходимость постоянного и тщательного контроля за факторами, влияющими на процесс обеззараживания. Некоторые из реагентов (особенно хлор) являются токсичными и требуют мер предосторожности при работе с ними. Все это явилось причиной разработки физических (ареагентных) методов, имеющих ряд преимуществ по сравнению с химическими. Безреагентные методы не оказывают влияния на состав и свойства обеззараживаемой воды, не ухудшают ее органолептических свойств. Они действуют непосредственно на структуру микроорганизмов, в силу чего обладают более широким диапазоном бактерицидного действия. Для обеззараживания затрачивается небольшой период времени.

В настоящее время не имеется достаточно эффективных установок для практического использования этих методов. Наиболее изученным и разработанным в техническом отношении является использование ультрафиолетовых лучей.

В СССР в течение многих лет проводилась большая научно-исследовательская работа Академией коммунального хозяйства, в результате которой были созданы мощные установки для обеззараживания воды ультрафиолетовыми лучами. Многие из них в настоящее время работают на водопроводных станциях , Стерлитамака, Тамбова и других городов Советского Союза. Для обеззараживания большого объема воды применяются установки ОВ-АКХ-1 с погруженными ртутно-кварцевыми лампами высокого давления (ПРК-7). На небольших водопроводах используются аргонно-ртутные лампы низкого давления (БУВ-15, БУВ-30, БУВ-ЗОП). Обеззараживание воды под воздействием ультрафиолетовых лучей наступает быстро, в течение 1-2 минут. При обеззараживании воды ультрафиолетовыми лучами погибают не только вегетативные формы микробов, но и споровые, а также вирусы, яйца гельминтов, устойчивые к воздействию хлора.

На эффект обеззараживания воды ультрафиолетовыми лучами влияют мутность, цветность воды, содержание в ней солей железа, так как они поглощают ультрафиолетовые лучи. Поэтому прежде чем обеззараживать воду ультрафиолетовыми лучами, ее необходимо тщательно очищать.

Из всех имеющихся физических методов обеззараживания воды наиболее испытанным и надежным является кипячение. В результате кипячения воды в течение 3-5 минут погибают все имеющиеся в ней микроорганизмы, а после 30 минут кипячения вода становится полностью стерильной. Несмотря на высокий бактерицидный эффект, этот метод не находит широкого применения для обеззараживания больших объемов воды. Его можно использовать в быту, детских учреждениях и т. д. Для этой цели используются кипятильники различной конструкции. Недостатком кипячения является ухудшение вкуса воды, наступающее в результате улетучивания газов, и возможность более быстрого развития микроорганизмов в кипяченой воде.

К физическим методам обеззараживания воды относятся использование ультразвука, ионизирующего излучения. В настоящее время эти методы широкого практического применения пока еще не имеют.

Обеззараживание воды механическим способом . Механический способ обеззараживания воды заключается в фильтровании ее через специальные фильтры, изготовленные из необожженного фарфора, инфузорной земли, диатомовые фильтры, асбесто-целлюлозные пластины. Все эти фильтры могут быть использованы только для обеззараживания небольших объемов воды.

Обеззараживание индивидуальных запасов воды . Необходимость обеззараживания индивидуальных запасов воды (во фляге и т. д.) возникает в полевых, экспедиционных и некоторых других условиях. Для этой цели применяются главным образом химические методы. Обеззараживание производится специальными таблетками пантоцида (пара-дихлорсульфамидбензойная кислота), изготовленными из органических хлораминов. Одна таблетка должна содержать не менее 3 мг активного хлора. Обеззараживание воды наступает в течение 30 минут. Недостатком этих таблеток является продолжительность их растворения. Они плохо обеззараживают воду, содержащую гуминовые и другие органические вещества. Кроме таблеток пантоцида, применяются персульфатные таблетки, перекисные соединения в сочетании с солями серебра и меди, бисульфатпантоцидные таблетки и йодорганические соединения.

Кипячение воды , т. е. нагревание ее до 100 0 С, приводит к безусловной гибели всех микроорганизмов, в том числе и патогенных. Кроме того, при кипячении могут разрушаться некоторые термолабильные токсины (ботулотоксин) и ядовитые вещества. В том числе и ОВ. Для большей гарантии в отношении термоустойчивых вирусов кипячение рекомендуют продолжать в течение 10-15 мин. Уничтожение споровых форм достигается увеличением срока кипячения до 2 часов. Такого же эффекта можно достичь нагреванием воды до 110-120 о С в течение 5-10 мин при избыточном давлении (автоклавирование).

Кипячение воды, как метод ее обеззараживания по сравнению с другими имеет ряд преимуществ. К их числу относятся простота, доступность и надежность обеззараживания, независимость бактерицидного эффекта от состава воды, отсутствие заметного влияния на физико-химические и органолептические свойства воды.

Наряду с преимуществами метод обеззараживания воды кипячением имеет и некоторые существенные недостатки: он экономически нерентабелен, требует большого количества топлива и сравнительно громоздкий из-за малопроизводительной аппаратуры в виде различного рода кипятильников. В связи с этим кипячение для целей обеззараживания больших количеств воды не применяется. При обработке небольших объемов воды он широко используется как в мирное, так и в военное время.

Метод обеззараживания воды ультрафиолетовыми лучами имеет важные преимущества, к числу которых относятся широкий антибактериальный спектр действия с выключением споровых и вирусных форм, исчисляемая несколькими секундами экспозиция, сохранение природных свойств воды, улучшение условий труда обслуживающего персонала в связи с исключением из обращения вредных химических веществ - дезинфектантов, экономическая рентабельность.

Установлено, что максимальное бактерицидное действие оказывает ультрафиолетовый участок спектра, в особенности лучи с длиной волны от 200 до 280 мм (область С).

Недостатком метода является отсутствие простого и быстрого способа контроля за полнотой обеззараживания воды, а также большое влияние физико-химических свойств воды (цветность, мутность, содержание железа и т.п.) на эффект обеззараживания.

4.6.2. Химические методы обеззараживания воды

Химические методы обеззараживания воды основаны на применении различных веществ, обладающих бактерицидным действием. Эти вещества должны отвечать определенным требованиям, а именно: не делать воду вредной для здоровья, не изменять ее органолептических свойств, в малых концентрациях и в течение короткого времени контакта оказывать надежное бактерицидное действие, быть удобными в применении и безопасными в обращении, длительно храниться, производство их должно быть дешевым и доступным.

В наибольшей степени этим требованиям отвечают хлор и его препараты, чем можно объяснить их распространение в практике коммунального и полевого водоснабжения.

Для обеззараживания воды применяются и другие вещества - озон, йод, перекись водорода, препараты серебра, органические и неорганические кислоты и некоторые другие.

Наряду с положительными свойствами, метод хлорирования имеет и недостатки. Основным из них является неспособность хлора и его препаратов в тех дозах, в которых они обычно применяются, уничтожать в воде споровые формы микроорганизмов. Для достижения этой цели прибегают к очень большим дозам хлора и длительному его контакту с водой. К недостаткам хлорирования следует отнести также трудность дозировки и опасность в обращении с хлором, нестойкость его препаратов при хранении, неприятный запах хлорированной воды, в особенности при наличии в ней химических веществ типа фенолов, а также возможность образования тригалометанов.

Эффективность хлорирования воды определяется свойствами хлорсодержащего препарата, концентрацией в нем активного хлора, физико-химическими свойствами воды и временем контакта с ней хлора, степенью обсеменения воды микроорганизмами и их видом.

Как считает большинство исследователей, для уничтожения подавляющего числа вегетативных форм микроорганизмов достаточно контакта хлора с водой в течение 30 мин.

Наиболее надежным способом контроля эффективности обеззараживания воды является бактериологическое исследование. Однако такие исследования длительны и сложны, особенно в полевых условиях и боевой обстановке. Контроль за полнотой обеззараживания осуществляется по остаточному хлору. Остаточный хлор состоит из свободного и связанного. Установлено, что, если в хлорированной воде через 30 мин после внесения туда определенного количества хлора осталось 0,3 ‑ 0,5 мг/л свободного остаточного хлора, вода, как правило, оказывается надежно обеззараженной.

Известно, что наряду со свободными формами хлора в реакцию вступает и учитывается связанный хлор, основу которого составляют хлорамины и дихлорамины. Их бактерицидное действие во много раз меньше, чем свободного хлора. Поэтому недостаточно знать лишь общее количество остаточного хлора. В каждом конкретном случае необходимо устанавливать его качественный состав, чтобы сделать правильное заключение о надежности проведенного обеззараживания воды. Согласно стандарту концентрация связанного (хлораминного) хлора после экспозиции не менее часа должна составлять 0,8 - 1,2 мг/л.

В случаях эпидемиологического неблагополучия величина остаточного хлора может быть повышена до 2 мг/л без ущерба для здоровья населения. По остаточному хлору устанавливается и хлорпотребность воды.

Основными способами хлорирования воды являются хлорирование нормальными дозами и хлорирование повышенными дозами (гиперхлорирование).

Хлорирование нормальными дозами наиболее распространено, особенно в практике коммунального водоснабжения. Сущность его заключается в выборе такой рабочей дозы активного хлора, которая после 60-минутного контакта с водой обеспечивает наличие 0,8 - 1,2 мг/л остаточного связанного хлора. К преимуществам метода относятся относительно небольшое влияние на органолептические свойства воды, что позволяет употреблять воду без последующего дехлорирования, малый расход хлора или хлорсодержащих препаратов. Недостатками метода является сложность выбора рабочей дозы хлора и возможность появления хлорфенольного запаха вследствие образования хлорфенолов в воде, содержащей даже очень незначительные количества кислоты или ее гомологов.

При хлорировании воды большими дозами хлора в нее вносится повышенное количество активного хлора в расчете на последующее дехлорирование. Доза активного хлора выбирается в зависимости от физических свойств воды (мутность, цветность), характера и степени благоустройства водоисточника и от эпидемической обстановки. В большинстве случаев она составляет 20 - 30 мг/л при времени контакта 30 мин.

К преимуществам метода относятся:

Надежный эффект обеззараживания даже мутных, окрашенных и вод, содержащих аммиак;

Упрощение техники хлорирования (не нужно определять хлорпотребность воды);

Снижение цветности воды за счет окисления хлором органических веществ и перевода их в неокрашенные соединения;

Устранение посторонних привкусов и запахов, особенно обусловленных присутствием сероводорода, а также разлагающихся веществ растительного и животного происхождения;

Отсутствие хлорфенольного запаха при наличии фенолов, так как при этом образуются не моно-, а полихлорфенолы, которые запахом не обладают;

Разрушение некоторых отравляющих веществ и токсинов (ботулотоксина); уничтожение споровых форм микроорганизмов при дозе 100 - 150 мг/л активного хлора и длительности контакта 2-5 ч, значительное улучшение условий для процесса коагуляции воды.

Перечисленные положительные стороны метода делают его весьма ценным для практики улучшения качества воды в полевых условиях, когда выбор водоисточников ограничен и возникает потребность использования воды низкого качества, особенно в связи с опасностью применения бактериологического и химического оружия.

К недостаткам метода, как уже указывалось, следует отнести возможность образования тригалометанов, особенно при хлорировании воды, содержащей хозяйственно-бытовые стоки и гуминовые вещества, повышенный расход хлора и необходимость дехлорирования воды.

В качестве средств дехлорирования используются химические вещества, связывающие избыточное количество хлора, и сорбция хлора на активированном угле. Химические вещества, переводящие хлор в неактивное состояние, обычно относятся к группе восстановителей. Лучшим из них является тиосульфат (гипосульфит) натрия.

Дехлорирование воды может производиться сернистокислым и сернистым ангидридом, а также фильтрованием через обычный или активный уголь. Небольшие количества воды можно дехлорировать путем внесения угольного порошка в воду.

Применяемая для обеззараживания воды перекись водорода (Н 2 О 2) также является сильным окислителем. Акцептором служит атомарный кислород. Из-за трудности получения в больших количествах и дороговизны перекись водорода широкого применения в практике водоснабжения не приобрела. В последнее время разработан новый, более дешевый способ ее получения, в связи с чем, метод этот приобретает практический интерес.

Перекись водорода не изменяет органолептических свойств воды и значительно (до 50 %) снижает ее цветность, что весьма ценно для обеззараживания окрашенных вод. К числу недостатков метода относятся необходимость введения катализаторов для ускорения высвобождения атомарного кислорода и жидкая форма препарата, что затрудняет ее применение в полевых условиях.

Обеззараживание воды серебром основано на том, что ионы этого металла инактивируют бактериальные ферменты, блокируя их сульфгидрильные группы. Практически метод обеззараживания серебром может быть применен при небольших индивидуально-групповых запасах воды. Для этой цели используют посеребренный песок, посеребренные керамические «кольца Рашига» и серебро, растворенное электролитическим путем, т.е. растворенный при пропускании постоянного тока через обеззараживаемую воду серебряный электрод (анод). Таким путем можно получить «серебрянную воду», обладающую бактерицидными свойствами. Возможно также обеззараживание воды добавлением солей серебра.

Обеззараживание воды серебром не изменяет ее органолептических свойств и обеспечивает длительность бактерицидного действия, что особенно важно в тех случаях, когда возникает необходимость в длительном хранении воды.

К недостаткам метода следует отнести трудность дозировки, медленное и ненадежное бактерицидное действие, влияние на бактерицидный эффект физико-химических свойств воды, а также необходимость контроля остаточных количеств серебра в питьевой воде.

По способу воздействия на микробов методы обеззараживания воды раделяют на химические, физические и комбинированные. В химическом методе должный эффект достигается путем внесения в воду биологически активных соединений. Физические методы обеззараживания подразумевают собой обработку воды различными физическими воздействиями,ну а в комбинированных применяется одновременно химическое и физическое воздействие.

Головными сооружениями водопровода, питающегося водой из открытого водоема, являются: сооружения для забора и улучшения качества воды, резервуар для чистой воды, насосное хозяйство и водонапорная башня. От нее отходит водовод и разводящая сеть трубопроводов, изготовленных из стали или имеющих антикоррозийные покрытия.

Итак, первый этап очистки воды открытого водоисточника -- это осветление и обесцвечивание. В природе это достигается путем длительного отстаивания. Но естественный отстой протекает медленно и эффективность обесцвечивания при этом невелика. Поэтому на водопроводных станциях часто применяют химическую обработку коагулянтами, ускоряющую осаждение взвешенных частиц. Процесс осветления и обесцвечивания, как правило, завершают фильтрованием воды через слой зернистого материала (например, песок или измельченный антрацит). Применяют два вида фильтрования -- медленное и скорое.

Медленное фильтрование воды проводят через специальные фильтры, представляющие собой кирпичный или бетонный резервуар, на дне которого устраивают дренаж из железобетонных плиток или дренажных труб с отверстиями. Через дренаж профильтрованная воды отводится из фильтра. Поверх дренажа загружают поддерживающий слой щебня, гальки и гравия по крупности, постепенно уменьшающейся кверху, что не дает возможности мелким частицам просыпаться в отверстия дренажа. Толщина поддерживающего слоя -- 0,7 м. На поддерживающий слой загружаютфильтрующий слой (1 м) с диаметром зерен 0,25-0,5 мм. Медленный фильтр хорошо очищает воду только после созревания, которое состоит в следующем: в верхнем слое песка происходят биологические процессы -- размножение микроорганизмов, гидробионтов, жгутиковых, затем их гибель, минерализация органических веществ и образование биологической пленки с очень мелкими порами, способными задерживать даже самые мелкие частицы, яйца гельминтов и до 99% бактерий. Скорость фильтрации составляет 0,1-0,3 м/ч.

Медленнодействующие фильтры применяют на малых водопроводах для водоснабжения сел и поселков городского типа. Раз в 30-60 дней поверхностный слой загрязненного песка снимают вместе с биологической пленкой.

Стремление ускорить осаждение взвешенных частиц, устранить цветность воды и ускорить процесс фильтрования привело к проведению предварительного коагулирования воды. Для этого к воде добавляют коагулянты, т. е. вещества, образующие гидроокиси с быстро оседающими хлопьями. В качестве коагулянтов применяют сернокислый алюминий -- Al2(SO4)3 ; хлорное железо -- FeSl^ сернокислое железо -- FeSO4 и др. Хлопья коагулянта обладают огромной активной поверхностью и положительным электрическим зарядом, что позволяет им адсорбировать даже мельчайшую отрицательно заряженную взвесь микроорганизмов и коллоидных гуминовых веществ, которые увлекаются на дно отстойника оседающими хлопьями. Условия эффективности коагуляции -- наличие бикарбонатов. На 1 г коагулянта добавляют 0,35 г Са(ОН)2. Размеры отстойников (горизонтальных или вертикальных) рассчитаны на 2-3-часовое отстаивание воды.

После коагуляции и отстаивания вода подается на скорые фильтры с толщиной фильтрующего слоя песка 0,8 м и диаметром песчинок 0,5-1 мм. Скорость фильтрации воды составляет 5-12 м/час. Эффективность очистки воды: от микроорганизмов -- на 70-98% и от яиц гельминтов -- на 100%. Вода становится прозрачной и бесцветной.

Благодаря тому, что в процессе осветления происходит устранение мутности воды из-за снижения содержания в ней примесей, находящихся во взвешенном состоянии, такой процесс как обеззараживание воды , следующий за ним, значительно упрощается. Это и неудивительно, ведь вместе с песком и яйцами гельминтов в процессе осветления исчезает и значительная часть микроорганизмов.

Очистку фильтра проводят путем подачи воды в обратном направлении со скоростью, в 5-6 раз превышающей скорость фильтрования в течение 10-15 мин.

С целью интенсификации работы описанных сооружений используют процесс коагуляции в зернистой загрузке скорых фильтров (контактная коагуляция). Такие сооружения называют контактными осветелителями. Их применение не требует строительства камер хлопьеобразования и отстойников, что позволяет уменьшить объем сооружений в 4-5 раз. Контактный фильтр имеет трехслойную загрузку. Верхний слой -- керамзит, полимерная крошка и др. (размер частиц --- 2,3-3,3 мм).

Средний слой -- антрацит, керамзит (размер частиц -- 1,25-2,3 мм).

Нижний слой -- кварцевый песок (размер частиц -- 0,8-1,2 мм). Над поверхностью загрузки укрепляют систему перфорированных труб для введения раствора коагулянта. Скорость фильтрации до 20 м/час.

При любой схеме заключительным этапом обработки воды наводопроводе из поверхностного источника должно быть обеззараживание.

Итак, как обеззараживать воду , спросите вы? Достаточно просто, ведь сегодня существует множество методов, которые помогают полностью очистить воду, сделав ее абсолютно безопасной. Разумеется, пытаться обеззаразить воду самостоятельно не стоит, ведь сегодня создано множество специализированных установок, которые выполнят данную процедуру быстрее, и главное качественнее, чем вы сами.

При организации централизованного хозяйственно-питьевого водоснабжения небольших населенных пунктов и отдельных объектов (дома отдыха, пансионаты, пионерские лагеря) в случае использования в качестве источника водоснабжения поверхностных водоемов необходимы сооружения небольшой производительности. Этим требованиям отвечают компактные установки заводского изготовления "Струя" производительностью от 25 до 800 м3/сутки.

В установке используют трубчатый отстойник и фильтр с зернистой загрузкой. Напорная конструкция всех элементов установки обеспечивает подачу исходной воды насосами первого подъема через отстойник и фильтр непосредственно в водонапорную башню, а затем потребителю. Основное количество загрязнений оседает в трубчатом отстойнике. Песчаный фильтр обеспечивает окончательное извлечение из воды взвешенных и коллоидных примесей.

Хлор для обеззараживания может вводиться либо перед отстойником, либо сразу в фильтрованную воду. Промывку установки проводят 1-2 раза в сутки в течение 5-10 мин обратным потоком воды. Продолжительность обработки воды не превышает 40-60 мин, тогда как на водопроводной станции этот процесс составляет от 3 до 6 ч.

Эффективность очистки и обеззараживания воды на установке "Струя" достигает 99,9%.

Обеззараживание воды может быть проведено химическими и физическими (безреагентными) методами.

Остановимся немного поподробнее на каждом из этих методов, чтобы выяснить чем обеззараживают воду в каждом из них. Немного ниже приведены принципы обеззараживания воды в каждом из этих методов и описаны их преимущества и недостатки. И если вы именно сейчас выбираете как очистить воду, то внимательно ознакомьтесь с данной весьма полезной информацией.

К химическим методам обеззараживания воды относят хлорирование и озонирование. Задача обеззараживания -- уничтожение патогенных микроорганизмов, т. е. обеспечение эпидемической безопасности воды.

Россия была одной из первых стран, в которой хлорирование воды стало применяться на водопроводах. Произошло это в 1910 г. Однако на первом этапе хлорирование воды проводили только при вспышках водных эпидемий.

В настоящее время хлорирование воды является одним из наиболее широко распространенных профилактических мероприятий, сыгравших огромную роль в предупреждении водных эпидемий. Этому способствует доступность метода, его дешевизна и надежность обеззараживания, а также многовариантность, т. е. возможность обеззараживать воду на водопроводных станциях, передвижных установках, в колодце (при его загрязнении и ненадежности), на полевом стане, в бочке, ведре и во фляге. Принцип хлорирования основан на обработке воды хлором или химическими соединениями, содержащими хлор в активной форме, обладающей окислительным и бактерицидным действием.

Химизм происходящих процессов состоит в том, что при добавлении хлора к воде происходит его гидролиз:

т. е. образуются соляная и хлорноватистая кислота. Во всех гипотезах, объясняющих механизм бактерицидного действия хлора, хлорноватистой кислоте отводят центральное место. Небольшие размеры молекулы и электрическая нейтральность позволяют хлорноватистой кислоте быстро пройти через оболочку бактериальной клетки и воздействовать на клеточные ферменты (SH-группы;), важные для обмена веществ и процессов размножения клетки. Это подтверждено при электронной микроскопии: выявлено повреждение оболочки клетки, нарушение ее проницаемости и уменьшение объема клетки.

На крупных водопроводах для хлорирования применяют газообразный хлор, поступающий в стальных баллонах или цистернах в сжиженном виде. Используют, как правило, метод нормального хлорирования, т. е. метод хлорирования по хлорпотребности.

Имеет важное значение выбор дозы, обеспечивающий надежное обеззараживание. При обеззараживании воды хлор не только способствует гибели микроорганизмов, но и взаимодействует с органическими веществами воды и некоторыми солями. Все эти формы связывания хлора объединяются в понятие "хлорпоглощаемость воды".

В соответствии с СанПиН 2.1.4.559-96 "Питьевая вода..." доза хлора должна быть такой, чтобы после обеззараживания в воде содержалось 0,3-0,5 мг/л свободного остаточного хлора. Этот метод, не ухудшая вкуса воды и не являясь вредным для здоровья, свидетельствует о надежности обеззараживания. Количество активного хлора в миллиграммах, необходимое для обеззараживания 1 л воды, называют хлорпотребностью.

Кроме правильного выбора дозы хлора, необходимым условием эффективного обеззараживания является хорошее перемешивание воды и достаточное время контакта воды с хлором: летом не менее 30 минут, зимой не менее 1 часа.

Модификации хлорирования: двойное хлорирование, хлорирование с аммонизацией, перехлорирование и др.

Двойное хлорирование предусматривает подачу хлора на водопроводные станции дважды: первый раз перед отстойниками, а второй -- как обычно, после фильтров. Это улучшает коагуляцию и обесцвечивание воды, подавляет рост микрофлоры в очистных сооружениях, увеличивает надежность обеззараживания.

Хлорирование с аммонизацией предусматривает введение в обеззараживаемую воду раствора аммиака, а через 0,5-2 минуты -- хлора. При этом в воде образуются хлорамины -- монохлорамины (NH2Cl) и дихлорамины (NHCl2), которые также обладают бактерицидным действием. Этот метод применяется для обеззараживания воды, содержащей фенолы, с целью предупреждения образования хлорфенолов. Даже в ничтожных концентрациях хлорфенолы придают воде аптечный запах и привкус. Хлорамины же, обладая более слабым окислительным потенциалом, не образуют с фенолами хлорфенолов. Скорость обеззараживания воды хлораминами меньше, чем при использовании хлора, поэтому продолжительность дезинфекций воды должна быть не меньше 2 ч, а остаточный хлор равен 0,8-1,2 мг/л.

Перехлорирование предусматривает добавление к воде заведомо больших доз хлора (10-20 мг/л и более). Это позволяет сократить время контакта воды с хлором до 15-20 мин и получить надежное обеззараживание от всех видов микроорганизмов: бактерий, вирусов, риккетсий Бернета, цист, дизентерийной амебы, туберкулеза и даже спор сибирской язвы. По завершении процесса обеззараживания в воде остается большой избыток хлора и возникает необходимость дехлорирования. С этой целью в воду добавляют гипосульфит натрия или фильтруют воду через слой активированного угля.

Перехлорирование применяется преимущественно в экспедициях и военных условиях.

К недостаткам метода хлорирования следует отнести:

сложность транспортировки и хранения жидкого хлора и его токсичность;

продолжительное время контакта воды с хлором и сложность подбора дозы при хлорировании нормальными дозами;

образование в воде хлорорганических соединений и диоксинов, небезразличных для организма;

изменение органолептических свойств воды.

И тем не менее высокая эффективность делает метод хлорирования самым распространенным в практике обеззараживания воды.

Оно и понятно, ведь обеззараживание воды хлором это самый дешевый, и вместе с этим, действенный способ. К тому же, благодаря современной технологии обеззараживания воды гипохлоритом натрия сегодня можно значительно уменьшить вредность воздействия данного метода на окружающую среду. Само собой, по сравнению с традиционным жидким хлором этот метод более дорогой, но зато куда более безопасный.

В поисках безреагентных методов или реагентов, не изменяющих химического состава воды, обратили внимание на озон. Впервые эксперименты с определением бактерицидных свойств озона были проведены во Франции в 1886 г. Первая в мире производственная озонаторная установка была построена в 1911 г. в Петербурге.

В настоящее время метод озонирования воды является одним из самых перспективных и уже находит применение во многих странах мира -- Франции, США т. д. У нас озонируют воду в Москве, Ярославле, Челябинске, на Украине (Киев, Днепропетровск, Запорожье и др.).

Озон (О3) -- газ бледно-фиолетового цвета с характерным запахом. Молекула озона легко отщепляет атом кислорода. При разложении озона в воде в качестве промежуточных продуктов образуются короткоживущие свободные радикалы НО2 и ОН. Атомарный кислород и свободные радикалы, являясь сильными окислителями, обусловливают бактерицидные свойства озона.

Наряду с бактерицидным действием озона в процессе обработки воды происходит обесцвечивание и устранение привкусов и запахов.Озон получают непосредственно на водопроводных станциях путем тихого электрического разряда в воздухе. Установка для озонирования воды объединяет блоки кондиционирования воздуха, получения озона и смешения его с обеззараживаемой водой. Косвенным показателем эффективности озонирования является остаточный озон на уровне 0,1-0,3 мг/л после камеры смешения.

Преимущества озона перед хлором при обеззараживании воды состоит в том, что озон не образует в воде токсических соединений (хлорорганических соединений, диоксинов, хлорфенолов и др.), улучшает органолептические показатели воды и обеспечивает бактерицидный эффект при меньшем времени контакта (до 10 мин). Он более эффективен по отношению к патогенным простейшим -- дизентерийной амебе, лямблиям и др.

Широкое внедрение озонирования в практику обеззараживания воды сдерживается высокой энергоемкостью процесса получения озона и несовершенством аппаратуры.

Олигодинамическое действие серебра в течение длительного времени рассматривалось как средство для обеззараживания преимущественно индивидуальных запасов воды. Серебро обладает выраженным бактериостатическим действием. Даже при введении в воду незначительного количества ионов микроорганизмы прекращают размножение, хотя остаются живыми и даже способными вызвать заболевание. Концентрации серебра, способные вызвать гибель большинства микроорганизмов, при длительном употреблении воды токсичны для человека. Поэтому серебро в основном применяется для консервирования воды при длительном хранении ее в плавании, космонавтике и т. д.

Для обеззараживания индивидуальных запасов воды применяются таблетированные формы, содержащие хлор.

Подобные таблетки для обеззараживания питьевой воды идеально подходят для максимально эффективного очищения воды, полученной из природных водных источников. Однако, данные препараты бывают разные, с совершенно различным содержанием хлора, поэтому необходимо внимательно следить за дозировкой. Кроме того, нужно внимательно следить и за сроком годности таких таблеток, иначе вы рискуете не получить нужного результата.

Аквасепт -- таблетки, содержащие 4 мг активного хлора мононатриевой соли дихлори-зоциануровой кислоты. Растворяется в воде в течение 2-3 мин, подкисляет воду и тем самым улучшает процесс обеззараживания.Пантоцид -- препарат из группы органических хлораминов, растворимость -- 15-30 мин., выделяет 3 мг активного хлора.

К физическим методам относятся кипячение, облучение ультрафиолетовыми лучами, воздействие ультразвуковыми волнами, токами высокой частоты, гамма-лучами и др.

Преимущество физических методов обеззараживания перед химическими состоит в том, что они не изменяют химического состава воды, не ухудшают ее органолептических свойств. Но из-за их высокой стоимости и необходимости тщательной предварительной подготовки воды в водопроводных конструкциях применяется только ультрафиолетовое облучение, а приместном водоснабжении -- кипячение.

Ультрафиолетовые лучи обладают бактерицидным действием. Это было установлено еще в конце прошлого века А. Н. Маклановым. Максимально эффективен участок УФ-части оптического спектра в диапазоне волн от 200 до 275 нм. Максимум бактерицидного действия приходится на лучи с длиной волны 260 нм. Механизм бактерицидного действия УФ-облучения в настоящее время объясняют разрывом связей в энзимных системах бактериальной клетки, вызывающим нарушение микроструктуры и метаболизма клетки, приводящим к ее гибели. Динамика отмирания микрофлоры зависит от дозы и исходного содержания микроорганизмов. На эффективность обеззараживания оказывают влияние степень мутности, цветности воды и ее солевой состав. Необходимой предпосылкой для надежного обеззараживания воды УФ-лучами является ее предварительное осветление и обесцвечивание.

Преимущества ультрафиолетового облучения в том, что УФ-лучи не изменяют органолептических свойств воды и обладают более широким спектром антимикробного действия: уничтожают вирусы, споры бацилл и яйца гельминтов.

Ультразвук применяют для обеззараживания бытовых сточных вод, т. к. он эффективен в отношении всех видов микроорганизмов, в том числе и спор бацилл. Его эффективность не зависит от мутности и его применение неприводит к пенообразованию, которое часто имеет место при обеззараживании бытовых стоков.

Гамма-излучение очень эффективный метод. Эффект мгновенный. Уничтожение всех видов микроорганизмов, однако в практике водопроводов пока не находит применения.

При выполнении очистки воды необходимо использовать методы обеззараживания, которые позволяют устранить опасность от оставшихся в ней болезнетворных бактерий после фильтрации и коагулирования. Основными из них являются: хлорирование, озонирование, применение солей тяжёлых металлов и физические методы воздействия (ультразвук и ультрафиолет). На крупных очистительных сооружениях используют хлорирование и очистку хлорсодержащими веществами. Однако, настолько ли эффективен данный метод и безопасен?

Использование хлора и содержащих его веществ

Суть этого метода обеззараживания воды заключается в создании условий для протекания химических реакций окислительно-восстановительного типа. Под действием хлора на органические соединения происходит нарушение обмена веществ клеток бактерий, что приводит к их гибели.

Эффективность реагента зависит от наличий свободного или связанного хлора в его составе, а также от его концентрации. Оптимальным вариантом считается совпадение количества реагента с концентрацией бактерий, что приведёт к полному окислению всех примесей различного происхождения. В случае перерасхода хлора возникают в воде хлопья и комочки, образованные путём адсорбции взвешенных веществ. В результате оказывается, что внутри них бактерии и микробы остались в защищённом нетронутом состоянии, что неприемлемо.

Во время процесса обеззараживания воды происходит разрушение, разложение или минерализация примесей. При наличии в составе стоков растворимых и нерастворимых элементов в ходе реакции могут возникать неприятные запахи из-за распада хлорсодержащих продуктов, а также органических веществ и организмов. Наиболее неприятными считаются фенолы и ароматические соединения, так как вкус воды изменяется при их наличии всего в одной десятимиллионной части. Ситуация может ухудшится еще больше при повышении температуры в виде образования устойчивого запаха.

Выполнять фильтрацию и осветление стоков также помогают и хлорсодержащие компоненты:

  1. Хлорноватистая кислота является слабой и поэтому её действие должно быть обеспечено активностью окружающей среды и подходящим типом химической реакции.
  2. Двуокись хлора представляет наибольший интерес при обеззараживании, так как после обработки не образуются фенолы, а соответственно и гарантировано отсутствие неприятного запаха.

Для избежания появления запаха и привкуса воды выполняют хлорирование с аммонизацией. В процессе гидролиза хлораминов за счёт медленной скорости протекания реакции и проявляется антибактериальное свойство.

Однако, несмотря на все преимущества хлорирования, у данного метода есть серьёзный недостаток, который заключается в отсутствии полной стерильности воды. В воде остаются в единичных количествах спорообразующие бактерии и некоторые виды опасных вирусов. Для их уничтожения требуется значительно повышать концентрацию хлора и время контакта.

Озонирование воды

Способ озонирования заключается в высокой диффузии озона сквозь оболочки микроорганизмов, растворённых в воде, с последующим их окислением и гибелью. Обладая высоким антибактериальным действием, озон способен разрушать болезнетворные бактерии в несколько раз быстрее хлора при прочих одинаковых условиях. Максимальная эффективность достигается при уничтожении вегетативных бактерий. Спорообразующие микроорганизмы проявляют высокую стойкость и уничтожаются гораздо хуже.

Важным моментом в данном методе является подбор концентраций озона в воде, так как от этого напрямую зависит какие бактерии будут уничтожены, а какие нет. Например, для уничтожения моллюсков дрейссены потребуется доза в 3 мг/л, что является полностью безопасным для дальнейшего существования водяных клещей и хиромонид. Поэтому необходимо проведение химического состава воды и определение типов микроорганизмов, которые в ней находятся, то есть степень загрязнённости воды. Обычно доза находится в пределах 0,5-4,0 мг/л.

Степень обеззараживания воды и осветления озоном существенно ухудшается при повышенной мутности. Однако степень очистки практически не зависит от температуры воды.

Среди преимуществ метода можно выделить такие:

  1. Улучшение вкуса воды и полное отсутствие дополнительных химически активных веществ или их соединений.
  2. Отсутствие необходимости проведения дополнительных действий при превышении концентрации озона, как, например, в случае хлорирования.
  3. Возможность создания озона за счёт химической реакции прямо в водном растворе или при помощи озонаторов.

Судя из вышесказанного, метод является безопасным и эффективным, но его распространённому применению при очистке стала необходимость использования большого количества электричества, а также сложность технической реализации.

Использование ионов серебра

Обеззараживание воды с применением ионов серебра основано на возникающих химических процессах, которые до конца не изучены. Однако были выдвинуты следующие гипотезы:

  1. Ионы нарушают обмен веществ бактерий с внешней средой, что приводит к их гибели.
  2. Ионы за счёт адсорбции на поверхности микроорганизмов выполняют каталитическую роль и окисляют плазму в присутствии кислорода.
  3. Ионы проникают внутрь вредоносной клетки и надёжно соединяются с протоплазмой, нарушая её функциональность и, таким образом, разрушая её.

Скорость химической реакции увеличивается при повышении концентрации реагирующих веществ и увеличении температуры среды. При нагревании на 10 0 скорость реакции возрастает в несколько раз по истечении некоторого промежутка времени. Поэтому полное обеззараживание при оптимальной скорости и в минимальные сроки достигается при нагреве до определённого температурного уровня, который зависит от степени загрязнений.

Также для очистки воды применяют металлическое серебро, поскольку в ней имеются ионы серебра с незначительной концентрацией, которые и выполняют роль очистки. Их накопление стимулируется наличием увеличенной площади контакта с металлическим серебром. Поэтому при использовании такого метода добиваются увеличения поверхности контакта за счёт осаждения на материал с развитой площадью, через который и пропускают воду.

Технически такой способ реализуется путём создания электролитических процессов, когда в роли материала анода выступает серебро. При помощи регулирования электрических параметров удаётся добиться нужной концентрации ионов и с высокой точностью регулировать протекание процесса обеззараживания воды. Чтобы точно дозировать ионы серебра применяют ионаторы. Концентрацию регулируют при помощи оценки содержания солей, которые являются причиной изменения потенциала между электродами. Поэтому «серебряную воду» приготавливают отдельно.

При сравнении метода ионизирования серебром с хлорированием, учёные выделяют первый, поскольку он способен убивать бактерии и микроорганизмы более эффективно. Однако и ему достаточно сложно справляться некоторыми типами бактерий, например, коли (кишечная палочка). Она является самой устойчивой и поэтому по её наличию в растворе можно качественно судить о степени очистки воды. Также как и при озонировании на скорость очистки влияет мутность раствора и количество взвешенных частиц.

Обеззараживание воды ультразвуковыми волнами

Обеззараживание ультразвуковым способом основано на создании упругих волн, частота которых превышает 20 кГц и обладает определённой интенсивностью. Они меняют свойства жидкости и разрушают органические вещества путём повышения окружающего их давления в 10 5 атмосфер (эффект кавитации). То есть гибель бактерий наступает не из-за протекающей химической реакции, а вследствие механического разрушения, вызывающего распад белковой составляющей протоплазмы. Наиболее уязвимы одноклеточные микроорганизмы, моногенетические сосальщики а также и более крупные организмы, загрязняющие воду.

Существует несколько способов создания излучения:

  1. Пъезоэлектрический эффект. При создании электрического поля кристаллы кварца способны деформироваться и излучать при этом ультразвуковые волны. Применяют кварцевые пластины одинаковой толщины и определённой формы, отшлифованные и плотно приложенные с двух сторон толстой стальной плиты. Во время подачи тока на массивную плиту в электрическом поле она излучает ультразвук.
  2. Магнитострикционный эффект. Основан на намагничивании ферромагнитных предметов под действием магнитного поля, меняющего их геометрические размеры и объём с последующим сдвигом осевой линии. Эффекта зависит от угла приложения поля относительно оси кристалла, если речь идёт о монокристалле. По измерениям уровня ультразвука данный способ является эффективнее первого.

В ходе лабораторных исследований было установлено, что ультразвук способен уничтожать за время до двух минут более 95% кишечных палочек. Однако при этом стоит понимать, что одновременно с вредоносными бактериями происходит уничтожение и полезных. В частности было установлено нарушение флоры и фауны морского планктона. То есть можно сделать вывод о том, что метод весьма эффективен, но вода при его воздействии теряет свои полезные свойства, что является его основным недостатком.

Термическая обработка

Метод основан на кипячении воды путём повышения температуры выше 100 0 С. Достаточно эффективный метод обеззараживания воды, но медленный, по сравнению с другими способами, и требующий значительных затрат энергии на нагрев. Поэтому его применяют только в тех случаях, когда объёмы воды минимальны. Он простой и не требующий особых навыков и знаний, поэтому получил распространение для получения небольших количеств питьевой воды в столовых, больницах и т. д. Из-за громоздкости и экономической нецелесообразности в промышленных или малых масштабах его не применяют.

Из недостатков можно выделить тот факт, что термообработка воды не способна удалить болезнетворные споры. Поэтому этот метод нельзя использовать при обеззараживании водных растворов с неизвестным химическим составом.

Ультрафиолетовые лампы

Обеззараживание ультрафиолетом достигается за счёт применения лучей с длиной волны в интервале 2000-2950 А, которые изменяют формы бактерий, полностью уничтожая их. Эффект зависит от сообщённой излучением энергии, содержания взвеси в растворе, количестве микроорганизмов, мутности и поглощающей способности водной среды. Поэтому принято различать такие степени влияния воздействия облучения:

  1. Безопасная доза облучения, которая не вызывает гибель бактерий.
  2. Минимальная доза, которая вызывает гибель части бактерий конкретного вида. Однако бактерии, которые находились в состоянии покоя, начинают активно расти и размножаться в специально стимулируемой среде. При длительном воздействии происходит их вымирание.
  3. Полная доза, которая приводит к обеззараживанию воды.

Кишечные палочки являются наиболее устойчивыми к УФ излучению. Поэтому по их количеству можно качественно определять степень дезинфекции воды в условиях отсутствия спорообразующих бактерий. При их наличии критерием чистоты воды служит возникновение сопротивляемости излучению бактерий, образующих споры.

Источниками УФ излучения являются ртутные, аргонно-ртутные или ртутно-кварцевые лампы. Эффективность и целесообразность их применения напрямую зависит от коэффициента поглощения. Лампы с низким давлением обладают максимальным бактериальным действием, но имеют мощность до 30 Вт, а с большим - меньшим эффектом, но повышенной мощностью.

Преимуществами метода являются:

  1. Отсутствие необходимости использования физических или химических свойств воды или применения реагентов.
  2. Отсутствие осадков и примесей.
  3. Неизменность цвета и вкуса воды, а также отсутствие посторонних запахов.
  4. Простота реализации.

То есть УФ метод является наиболее безопасным и эффективным при выполнении процесса обеззараживания воды и полностью лишён недостатков всех вышеописанных способов. Однако перед его использованием необходимо выполнить предварительную очистку, чтобы снизить содержание примесей.

При необходимости очистки воды с выполнением обеззараживания стоит обращаться к профессионалам, которые смогут оценить состав и грамотно подобрать наиболее эффективные методы. Компания ЭГА сможет выполнить поставленные задачи в кратчайшие сроки благодаря слаженным действиям команды опытных специалистов. В результате воду можно будет безопасно использовать в качестве питьевой.

Видео

Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов , вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на химические, или реагентные; физические, или безреагентные, и комбинированные. В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия.

К химическим способам обеззараживания питьевой воды относят ее обработку окислителями: хлором , озоном и т. п., а также ионами тяжелых металлов. К физическим – обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д. Перед обеззараживанием вода обычно подвергается очистке фильтрацией и (или) коагуляцией, при которой удаляются взвешенные вещества, яйца гельминтов и значительная часть микроорганизмов.

Метод озонирования воды технически сложен и наиболее дорогостоящ. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это требует также дополнительного вспомогательного оборудования (озонаторы, компрессоры, установки осушки воздуха, холодильные агрегаты и т. д.), объемных строительно-монтажных работ.

Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м 3 . К тому же существует опасность взрыва озоновоздушной смеси.

Следует отметить, что, хотя ряд зарубежных фирм предлагает автономные озонаторные установки для организации водоснабжения отдельного коттеджа или очистки воды в бассейне, кроме очень высокой стоимости таких устройств, требуется обеспечение их высококачественного обслуживания. Применение установки, предлагаемой одной из отечественных фирм, для автономного водоснабжения без всяких систем контроля содержания озона в воздухе и воде, может печально кончиться для ее владельцев. В этих условиях возможно применение дозирования в воду гипохлорита, получаемого в малогабаритном электролизере типа «Санатор», хотя и здесь требуется квалифицированное обслуживание.

Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их «олигодинамического» свойства – способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие, а требования к воде, сбрасываемой в рыбохозяйственные водоемы, еще выше.

К химическим способам обеззараживания питьевой воды относится также широко применявшееся в начале 20 в. о беззараживание соединениями брома и йода, обладающими более выраженными бактерицидными свойствами, чем хлор, но требующими и более сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщен ные йодом. При пропускании через них воды йод постепенно вымыва ется из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации.

Применение активных углей и катионитов, насыщенных серебром , например, С-100 Ag или С-150 Ag фирмы « Purolite », преследует цели не «серебрения» воды, а предотвращения развития микроорганизмов при прекращении движения воды. При остановках создаются идеальные условиях для их размножения – большое количество органики, задержанное на поверхности частиц, их огромная площадь и повышенная температура. Наличие серебра в структуре этих частиц резко уменьшает вероятность обсеменения слоя загрузки. Серебросодержащие катиониты разработки ОАО НИИПМ – КУ-23СМ и КУ-23СП – содержат в себе значительно большее количество серебра и предназначены для обеззараживания воды в установках небольшой производительности.

Из физических способов обеззараживания питьевой воды наибольшее распространение получило обеззараживание воды ультрафиолетовыми лучами , бактерицидные свойства которых обусловлены действием на клеточный обмен и особенно на ферментные системы бактериальной клетки. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. В ажно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания.

Основным недостатком метода является полное отсутствие последействия.

Организация процесса УФ-обеззараживания требует больших капитальных вложений, чем хлорирование, но меньших, чем озонирование. Более низкие эксплуатационные расходы делают УФ-обеззара­живание и хлорирование сопоставимыми в экономическом плане. Расход электроэнергии незначителен, а стоимость ежегодной замены ламп составляет не более 10% от цены установки. Для индивидуального водоснабжения УФ-установки являются наиболее привлекательными.

Фактором, снижающим эффективность работы установок УФ-обез­зараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.

Обеззараживание питьевой воды ультразвуком основано на способности его вызывать т. н. кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.

Из физических способов индивидуального обеззараживания воды наиболее распространенным и надежным является кипячение, при котором, кроме уничтожения бактерий, вирусов, бактериофагов, антибиотиков и др. биологических объектов, часто содержащихся в открытых водоисточниках, удаляются растворенные в воде газы и уменьшается жесткость воды. Вкусовые качества воды при кипячении меняются мало.

Во многих случаях наиболее эффективным оказывается комплексное применение реагентных и безреагентных методов обеззараживания воды . Сочетание УФ-обеззараживания с последующим хлорированием малыми дозами обеспечивает как высочайшую степень очистки, так и отсутствие вторичного биозагрязнения воды. Так, обработкой воды бассейнов УФ-облучением в сочетании с хлорированием достигается не только высокая степень обеззараживания, снижение пороговой концентрации хлора в воде, но и, как следствие, существенная экономия средств на расходе хлора и улучшение обстановки в самом бассейне.

Аналогично распространяется использование озонирования, при котором уничтожается микрофлора и часть органических загрязнений, с последующим щадящим хлорированием, обеспечивающим отсутствие вторичного биозагрязнения воды. При этом резко сокращается образование токсичных хлорорганических веществ.

Поскольку все микроорганизмы характеризуются определенными размерами, пропуская воду через фильтрующую перегородку с размерами пор меньшими, чем микроорганизмы, можно полностью очистить от них воду. Так, фильтрующие элементы, имеющие размер пор менее 1 микрона, согласно действующим
ТИ 10-5031536-73-10 на безалкогольную продукцию, считаются обеспложивающими, т. е. стерилизующими. Хотя при этом из воды удаляются только бактерии, но не вирусы. Для более «тонких» процессов, когда недопустимо присутствие любых микроорганизмов, например, в микроэлектронике, применяют фильтры с порами размером не более 0,1–0,2 мкм.

Достаточно новыми способами обеззараживания воды являются электрохимический и электроимпульсный. Серийно производятся установки «Изумруд», «Сапфир», «Аквамин» и т. п. Их работа основана на пропускании воды через электрохимический диафрагменный реактор, разделенный ультрафильтрационной металлокерамической мембраной на катодную и анодную область. При подаче постоянного тока в катодной и анодной камерах происходит образование щелочного и кислого растворов, электролитическое образование активного хлора. В этих средах гибнут практически все микроорганизмы и происходит частичное разрушение органических загрязнений. Конструкция проточного электрохимического элемента хорошо отработана, и набором из различного числа таких элементов получают установки заданной производительности. Кроме того, их используют для получения дезинфицирующих растворов – католита и анолита, применяемых в медицинской практике. Что касается заявлений разработчиков об изменении структуры воды и ее чудодейственных свойствах, оставим это без комментариев.

При электроимпульсном воздействии производится электрический разряд в воде – электрогидравлический удар, т. н. эффект Л. А. Юткина. При разряде возникает ударная волна сверхвысокого давления, световое излучение и образуется озон. Эти факторы губительно действуют на биологические объекты в воде.