Бестрансформаторные понижающий преобразователь 220 вольт. Определение характеристик силового трансформатора без маркировки. Виды преобразователей и их устройство

Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов
Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:

  • На какие выводы подавать сетевое питание (230 вольт)?
  • С каких выводов снимать пониженное напряжение?
  • Каким оно будет (12 вольт, 24 или другим)?
  • Какую мощность сможет выдать трансформатор?
  • Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?
  • Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
    Для выполнения работы понадобятся простейшие инструменты и расходные материалы:

    • мультиметр с функциями омметра и вольтметра;
    • паяльник;
    • изолента или термоусадочная трубка;
    • сетевая вилка с проводом;
    • пара обычных проводов;
    • лампа накаливания;
    • штангенциркуль;
    • калькулятор.


    Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.
    Определение первичной и вторичной обмоток
    Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
    Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.


    Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
    Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.


    Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
    В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
    На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
    Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
    Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.
    Определение напряжения вторичной обмотки
    Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.


    Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
    Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
    Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
    Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.


    Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.


    Простые способы вычисления мощности силового трансформатора
    С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
    Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
    Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
    Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
    Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.


    Заключение
    Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.

    Вам может понравиться:

    • Вязаные коврики крючком: интересные модели, схемы и…
    • Идеи для подушек из старых свитеров… Никогда бы не…
    • Советы, которые будут полезны и начинающим, и…

    Сейчас в доме имеется много малогабаритной аппаратуры, которой требуется постоянное питание. Это и часы со светодиодной индикацией, и термометры, и малогабаритные приемники, и т.п. В принципе, они рассчитаны на батарейки, но те "садятся" в самый неподходящий момент. Простой выход - запитать их от сетевых блоков питания. Но даже малогабаритный сетевой (понижающий) трансформатор достаточно тяжел и места занимает не так уж мало, а импульсные источники питания все-таки сложны, требуют для изготовления определенного опыта и недешевой комплектации.

    Решением данной проблемы при выполнении определенных условий может служить бестрансформаторный блок питания с гасящим конденсатором. Эти условия:

    • полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства (например, к приемнику магнитофон для записи программы);
    • диэлектрический (непроводящий) корпус и такие же ручки управления у самого блока питания и подключаемого к нему устройства.

    Связано это с тем, что при питании от бестрансформаторного блока устройство находится под потенциалом сети, и прикосновение к его неизолированным элементам может хорошо "тряхнуть". Нелишне добавить, что при наладке таких блоков питания следует соблюдать правила техники безопасности и осторожность.

    При необходимости использовать для наладки осциллограф блок питания нужно включать через разделительный трансформатор.

    В самом простом виде схема бестрансформаторного блока питания имеет вид, показанный на рис.1.

    Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом VD1 включен резистор R2,а для разрядки конденсатора после отключения - параллельно ему резистор R1.

    Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой емкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:

    где (- частота сети (50 Гц); С-емкость конденсатора С1, Ф.

    Тогда выходной ток источника можно приблизительно определить так:

    где Uc - напряжение сети (220 В).

    Входная часть другого блока питания (рис.2а) содержит балластный конденсатор С1 и мостовойвыпрямитель из диодов VD1, VD2и стабилитронов VD3, VD4. Резисторы R1, R2 играют ту же роль, что и в первой схеме. Осциллограмма выходного напряжения блока приведена на рис.2б (когда напряжение на выходе превышает напряжение стабилизации стабилитронов, в противном случае он работает как обычный диод).

    От начала положительного полупериода тока через конденсатор С1 до момента t1 стабилитрон VD3 и диод,VD2 открыты, а стабилитрон VD4 и диод VD1 закрыты. В интервале времени t1...t3 стабилитрон VD3 и диод VD2 остаются открытыми, а через открывшийся стабилитрон VD4 проходит импульс тока стабилизации. Напряжение на выходе Uвых и на стабилитроне VD4 равно его напряжению стабилизации Uст.

    Импульсный ток стабилизации, являющийся для диодно-стабилитронного выпрямителя сквозным, минует нагрузку RH, которая подключена к выходу моста. В момент t2 ток стабилизации достигает максимума, а в момент t3 равен нулю. До окончания положительного полупериода остаются открытыми стабилитрон VD3 и диод VD2.

    В момент t4 завершается положительный и начинается отрицательный полупериод, от начала которого до момента t5 уже стабилитрон VD4 и диод VD1 открыты, а стабилитрон VD3 и диод VD2 закрыты. В интервале времени t5-t7 стабилитрон VD4 и диод VD1 продолжают оставаться открытыми, а через стабилитрон VD3 при напряжении UCT проходит сквозной импульс тока стабилизации, максимальный в момент t6. Начиная от t7 и до завершения отрицательного полупериода остаются открытыми стабилитрон VD4 и диод VD1. Рассмотренный цикл работы диодно-стабилитронного выпрямителя повторяется в следующие периоды сетевого напряжения.

    Таким образом, через стабилитроны VD3, VD4 от анода к катоду проходит выпрямленный ток, а в противоположном направлении - импульсный ток стабилизации. В интервалы времени t1...t3 и t5...t7 напряжение стабилизации изменяется не более чем на единицы процентов. Значение переменного тока на входе моста VD1...VD4 в первом приближении равно отношению напряжения сети к емкостному сопротивлению балластного конденсатора С1.

    Работа диодно-стабилитронного выпрямителя без балластного конденсатора, ограничивающего сквозной ток, невозможна. В функциональном отношении они неразделимы и образуют единое целое - конденсаторно-стабилитронный выпрямитель.

    Разброс значений UCT однотипных стабилитронов составляет примерно 10%, что приводит к возникновению дополнительных пульсаций выходного напряжения с частотой питающей сети, амплитуда напряжения пульсации пропорциональна разнице значений Uст стабилитронов VD3 и VD4.

    При использовании мощных стабилитронов Д815А...Д817Г их можно установить на общий радиатор, если в обозначении их типа присутствуют буквы "ПП (стабилитроны Д815АПП...Д817ГПП имеют обратную полярность выводов). В противном случае диоды и стабилитроны необходимо поменять местами.

    Бестрансформаторные источники питания обычно собираются по классической схеме: гасящий конденсатор, выпрямитель переменного напряжения, конденсатор фильтра, стабилизатор. Емкостной фильтр сглаживает пульсации выходного напряжения. Чем больше емкость конденсаторов фильтра, тем меньше пульсации и, соответственно, больше постоянная составляющая выходного напряжения. Однако в ряде случаев можно обойтись без фильтра, который зачастую является самым громоздким узлом такого источника питания.

    Известно, что конденсатор, включенный в цепь переменного тока, сдвигает его фазу на 90°. Фазосдвигающий конденсатор применяют, например, при подключении трехфазного двигателя к однофазной сети. Если в выпрямителе применить фазосдвигающий конденсатор, обеспечивающий взаимное перекрытие полуволн выпрямленного напряжения, во многих случаях можно обойтись без громоздкого емкостного фильтра или существенно уменьшить его емкость. Схема подобного стабилизированного выпрямителя показана на рис.3.

    Трехфазный выпрямитель VD1.VD6 подключен к источнику переменного напряжения через активное (резистор R1) и емкостное (конденсатор С1) сопротивления.

    Выходное напряжение выпрямителя стабилизирует стабилитрон VD7. Фазосдвигающий конденсатор С1 должен быть рассчитан на работу в цепях переменного тока. Здесь, например, подойдут конденсаторы типа К73-17 с рабочим напряжением не ниже 400 В.

    Такой выпрямитель можно применять там, где необходимо уменьшить габариты электронного устройства, поскольку размеры оксидных конденсаторов емкостного фильтра, как правило, гораздо больше, чем фазосдвигающего конденсатора сравнительно небольшой емкости.

    Еще одно преимущество предложенного варианта состоит в том, что потребляемый ток практически постоянен (в случае постоянной нагрузки), тогда как в выпрямителях с емкостным фильтром в момент включения пусковой ток значительно превышает установившееся значение (вследствие заряда конденсаторов фильтра), что в некоторых случаях крайне нежелательно.

    Описанное устройство можно применять и с последовательными стабилизаторами напряжения, имеющими постоянную нагрузку, а также с нагрузкой, не требующей стабилизации напряжения.

    Совершенно простенький бестрансформаторный блок питания (рис.4) можно соорудить "на коленке" буквально за полчаса.

    В данном варианте схема рассчитана на выходное напряжение 6,8 В и ток 300 мА. Напряжение можно менять заменой стабилитрона VD4 и, при необходимости, VD3 А установив транзисторы на радиаторы, можно увеличить и ток нагрузки. Диодный мост - любой, рассчитанный на обратное напряжение не менее 400 В. Кстати, можно вспомнить и про "древние" диоды. Д226Б.

    В другом бестрансформаторном источнике (рис.5) в качестве стабилизатора применена микросхема КР142ЕН8. Его выходное напряжение составляет 12 В. Если необходима регулировка выходного напряжения, то вывод 2 микросхемы DA1 подключают к общему проводу через переменный резистор, например, типа СПО-1 (с линейной характеристикой изменения сопротивления). Тогда выходное напряжение может изменяться в диапазоне 12...22 В.

    В качестве микросхемы DA1 для получения других выходных напряжений нужно применить соответствующие интегральные стабилизаторы, например, КР142ЕН5, КР1212ЕН5,КР1157ЕН5А и др. Конденсатор С1 должен быть обязательно на рабочее напряжение не ниже 300 В, марки К76-3, К73-17 или аналогичный (неполярный, высоковольтный). Оксидный конденсатор С2 выполняет роль фильтра по питанию и сглаживает пульсации напряжения. Конденсатор С3 уменьшает помехи по высокой частоте. Резисторы R1, R2 - типа МЛТ-0,25. Диоды VD1...VD4 можно заменить на КД105Б...КД105Г, КД103А, Б, КД202Е. Стабилитрон VD5 с напряжением стабилизации 22...27 В предохраняет микросхему от бросков напряжения в момент включения источника.

    Несмотря на то, что теоретически конденсаторы в цепи переменного тока мощности не потребляют, реально в них из-за наличия потерь может выделяться некоторое количество тепла. Проверить пригодность конденсатора в качестве гасящего для использования в бестрансформаторном источнике можно просто подключив его к электросети и оценив температуру корпуса через полчаса. Если конденсатор успевает заметно разогреться, он не подходит. Практически не нагреваются специальные конденсаторы для промышленных электроустановок (они рассчитаны на большую реактивную мощность). Такие конденсаторы обычно используются в люминесцентных светильниках, в пускорегулирующих устройствах асинхронных электродвигателей и т.п.

    В 5-вольтовом источнике (рис.6) с током нагрузки до 0,3 А применен конденсаторный делитель напряжения. Он состоит из бумажного конденсатора С1 и двух оксидных С2 и С3, образующих нижнее (по схеме) неполярное плечо емкостью 100 мкФ (встречно-последовательное включение конденсаторов). Поляризующими диодами для оксидной пары служат диоды моста. При указанных номиналах элементов ток короткого замыкания на выходе блока питания равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки - 27 В.

    Блок для питания портативного приемника (рис.7) легко помещается в его батарейный отсек. Диодный мост VD1рассчитывается на рабочий ток, его предельное напряжение определяется напряжением, которое обеспечивает стабилитрон VD2. Элементы R3, VD2. VT1 образуют аналог мощного стабилитрона. Максимальный ток и рассеиваемая мощность такого стабилитрона определяются транзистором VT1. Для него может потребоваться радиатор. Но в любом случае максимальный ток этого транзистора не должен быть меньше тока нагрузки. Элементы R4, VD3 - цепь индикации наличия выходного напряжения. При малых токах нагрузки необходимо учитывать ток, потребляемый этой цепью. Резистор R5 нагружает цепь питания малым током, чем стабилизирует ее работу.

    Гасящие конденсаторы С1 и С2 - типа КБГ или аналогичные. Можно также применить и К73-17 с рабочим напряжением 400 В (подойдут и с 250 В, так как они включены последовательно). Выходное напряжение зависит от сопротивления гасящих конденсаторов переменному току, реального тока нагрузки и от напряжения стабилизации стабилитрона.

    Для стабилизации напряжения бестрансформаторного блока питания с гасящим конденсатором можно использовать симметричные динисторы (рис.8).

    При зарядке конденсатора фильтра С2 до напряжения открывания динистора VS1 он включается и шунтирует вход диодного моста. Нагрузка в это время получает питание от конденсатора С2 В начале следующего полупериода С2 вновь подзаряжается до того же напряжения, и процесс повторяется. Начальное напряжение разрядки конденсатора С2 не зависит от тока нагрузки и напряжения сети, поэтому стабильность выходного напряжения блока достаточно высокая.

    Падение напряжения на динисторе во включенном состоянии невелико, рассеиваемая мощность, а значит, и нагрев его значительно меньше, чем у стабилитрона. Максимальный ток через динистор составляет около 60 мА. Если для получения необходимого выходного тока этого значения недостаточно, можно "умощнить динистор симистором или тиристором (рис.9). Недостаток таких источников питания - ограниченный выбор выходных напряжений, определяемый напряжениями включения динисторов.

    Бестрансформаторный блок питания с регулируемым выходным напряжением показан на рис.10а.

    Его особенность заключается в использовании регулируемой отрицательной обратной связи с выхода блока на транзисторный каскад VT1,включенный параллельно выходу диодного моста. Этот каскад является регулирующим элементом и управляется сигналом с выхода однокаскадного усилителя на VT2.

    Выходной сигнал VT2 зависит от разности напряжений, подаваемых с переменного резистора R7, включенного параллельно выходу блока питания, и источника опорного напряжения на диодах VD3, VD4. По существу, схема представляет собой регулируемый параллельный стабилизатор. Роль балластного резистора играет гасящий конденсатор С1, параллельного управляемого элемента - транзистор VT1.

    Работает этот блок питания следующим образом.

    При включении в сеть транзисторы VT1 и VT2 заперты, а через диод VD2 происходит заряд накопительного конденсатора С2. При достижении на базе транзистора VT2 напряжения, равного опорному на диодах VD3, VD4, транзисторы VT2 и VT1отпираются. Транзистор VT1 шунтирует выход диодного моста, и его выходное напряжение падает, что приводит к уменьшению напряжения на накопительном конденсаторе С2 и к запиранию транзисторов VT2 и VT1. Это, в свою очередь, вызывает увеличение напряжения на С2, отпирание VT2, VT1 и повторение цикла.

    За счет действующей таким образом отрицательной обратной связи выходное напряжение остается постоянным (стабилизированным) как при включенной нагрузке (R9), так и без нее (на холостом ходу). Его величина зависит от положения движка потенциометра R7.

    Верхнему (по схеме) положению движка соответствует большее выходное напряжение. Максимальная выходная мощность приведенного устройства равна 2 Вт. Пределы регулировки выходного напряжения - от 16 до 26 В, а при закороченном диодеVD4 - от 15 до 19,5 В. Уровень пульсаций на нагрузке - не более 70 мВ.

    Транзистор VT1 работает в переменном режиме: при наличии нагрузки - в линейном режиме, на холостом ходу - в режиме широтно-импульсной модуляции (ШИМ) с частотой пульсации напряжения на конденсаторе С2 100 Гц. При этом импульсы напряжения на коллекторе VT1 имеют пологие фронты.

    Критерием правильности выбора емкости С1 является получение на нагрузке требуемого максимального напряжения. Если его емкость уменьшена, то максимальное выходное напряжение на номинальной нагрузке не достигается. Другим критерием выбора С1 является неизменность осциллограммы напряжения на выходе диодного моста (рис.10б).

    Осциллограмма напряжения имеет вид последовательности выпрямленных синусоидальных полуволн сетевого напряжения с ограниченными (уплощенными) вершинами положительных полусинусоид, амплитуда вершин является переменной величиной, зависящей от положения движка R7, и меняется линейно при его вращении. Но каждая полуволна должна обязательно доходить до нуля, наличие постоянной составляющей (как показано на рис.10б пунктиром) не допускается, т.к. при этом нарушается режим стабилизации.

    Линейный режим является облегченным, транзистор VT1 нагревается мало и может работать практически без радиатора. Небольшой нагрев имеет место в нижнем положении движка R7 (при минимальном выходном напряжении). На холостом ходу тепловой режим транзистора VT1 ухудшается в верхнем положении движка R7 В этом случае транзистор VT1 должен быть установлен на небольшой радиатор, например, в виде "флажка" из алюминиевой пластинки квадратной формы со стороной 30 мм и толщиной 1...2 мм.

    Регулирующий транзистор VT1 - средней мощности, с большим коэффициентом передачи. Его коллекторный ток должен быть в 2...3 раза больше максимального тока нагрузки, допустимое напряжение коллектор-эмиттер - не меньше максимального выходного напряжения блока питания. В качестве VT1 могут быть использованы транзисторы КТ972А, КТ829А, КТ827А и т.п. Транзистор VT2работает в режиме малых токов, поэтому годится любой маломощный p-n-р-транзистор - КТ203, КТ361 и др.

    Резисторы R1, R2 - защитные. Они предохраняют регулирующий транзистор VT1 от выхода из строя вследствие перегрузки по току при переходных процессах в момент включения блока в сеть.

    Бестрансформаторный конденсаторный выпрямитель (рис.11) работает с автостабилизацией выходного напряжения. Это достигнуто за счет изменения времени подключения диодного моста к накопительному конденсатору. Параллельно выходу диодного моста включен транзистор VT1, работающий в ключевом режиме. База VT1 через стабилитрон VD3 соединена с накопительным конденсатором С2, отделенным по постоянному току от выхода моста диодом VD2 для исключения быстрого разряда при открытом VT1. Пока напряжение на С2 меньше напряжения стабилизации VD3, выпрямитель работает как обычно. При увеличении напряжения на С2 и открывании VD3 транзистор VT1 также открывается и шунтирует выход выпрямительного моста. Напряжение на выходе моста скачкообразно уменьшается практически до нуля, что приводит к уменьшению напряжения на С2 и выключению стабилитрона и ключевого транзистора.

    Далее напряжение на конденсаторе С2 снова увеличивается до момента включения стабилитрона и транзистора и т.д. Процесс автостабилизации выходного напряжения очень похож на работу импульсного стабилизатора напряжения с широтно-импульсным регулированием. Только в предлагаемом устройстве частота следования импульсов равна частоте пульсаций напряжения на С2. Ключевой транзистор VT1 для уменьшения потерь должен быть с большим коэффициентом усиления, например, КТ972А, КТ829А, КТ827А и др. Увеличить выходное напряжение выпрямителя можно, применив более высоковольтный стабилитрон (цепочку низковольтных, соединенных последовательно). При двух стабилитронах Д814В, Д814Д и емкости конденсатора С1 2 мкФ выходное напряжение на нагрузке сопротивлением 250 Ом может составлять 23...24 В.

    Аналогично можно стабилизировать выходное напряжение однополупериодного диодно-конденсаторного выпрямителя (рис.12).

    Для выпрямителя с плюсовым выходным напряжением параллельно диоду VD1 включен n-p-n транзистор, управляемый с выхода выпрямителя через стабилитрон VD3. При достижении на конденсаторе С2 напряжения, соответствующего моменту открывания стабилитрона, транзистор VT1 тоже открывается. В результате, амплитуда положительной полуволны напряжения, поступающего на С2 через диод VD2, уменьшается почти до нуля. При уменьшении же напряжения на С2 транзистор VT1 благодаря стабилитрону закрывается, что приводит к увеличению выходного напряжения. Процесс сопровождается широтно-импульсным регулированием длительности импульсов на входе VD2, следовательно, напряжение на конденсаторе С2 стабилизировано.

    В выпрямителе с отрицательным выходным напряжением параллельно диоду VD1 нужно включить p-n-p-транзистор КТ973А или КТ825А. Выходное стабилизированное напряжение на нагрузке сопротивлением 470 Ом - около 11 В, напряжение пульсаций - 0,3...0,4 В.

    В обоих вариантах стабилитрон работает в импульсном режиме при токе в единицы миллиампер, который никак не связан с током нагрузки выпрямителя, разбросом емкости гасящего конденсатора и колебаниями напряжения сети. Поэтому потери в нем существенно уменьшены, и теплоотвод ему не требуется. Ключевому транзистору радиатор также не требуется.

    Резисторы R1, R2 в этих схемах ограничивают входной ток при переходных процессах в момент включения устройства в сеть. Из-за неизбежного "дребезга" контактов сетевой вилки процесс включения сопровождается серией кратковременных замыканий и разрывов цепи. При одном из таких замыканий гасящий конденсатор С1 может зарядиться до полного амплитудного значения напряжения сети, т.е. примерно до 300 В. После разрыва и последующего замыкания цепи из-за "дребезга" это и сетевое напряжения могут сложиться и составить в сумме около 600 В. Это наихудший случай, который необходимо учитывать для обеспечения надежной работы устройства.

    Другой вариант ключевой бестрансформаторной схемы источника питания представлен на рис.13.

    Сетевое напряжение, проходя через диодный мост наVD1.VD4, преобразуется в пульсирующее амплитудой около 300 В. Транзистор VT1 - компаратор, VT2 - ключ. Резисторы R1, R2 образуют делитель напряжения для VT1. Подстройкой R2 можно установить напряжение срабатывания компаратора. Пока напряжение на выходе диодного моста не достигнет установленного порога, транзистор VT1 закрыт, на затворе VT2 - отпирающее напряжение и он открыт. Через VТ2 и диод VD5 заряжается конденсатор С1.

    При достижении установленного порога срабатывания транзистор VT1 открывается и шунтирует затвор VT2. Ключ закрывается и снова откроется тогда, когда напряжение на выходе моста станет меньше порога срабатывания компаратора. Таким образом, на С1 устанавливается напряжение, которое стабилизируется интегральным стабилизатором DA1.

    С приведенными на схеме номиналами источник обеспечивает выходное напряжение 5 В при токе до 100 мА. Настройка заключается в установке порога срабатывания VT1. Вместо IRF730 можно использовать. КП752А, IRF720, BUZ60, 2N6517заменяется на КТ504А.

    Миниатюрный бестрансформаторный блок питания для малопотребляющих устройств можно построить на микросхеме HV-2405E (рис.14), которая осуществляет прямое преобразование переменного напряжения в постоянное.

    Диапазон входного напряжения ИМС -15...275 В. выходного - 5...24 В при максимальном выходном токе до 50 мА. Выпускается в плоском пластмассовом корпусе DIP-8. Структура микросхемы приведена на рис.15а, цоколевка - на рис.15б.

    В схеме источника (рис. 14) особое внимание нужно уделить резисторам R1 и R2. Их общее сопротивление должно быть в районе 150 Ом, а рассеиваемая мощность - не менее 3 Вт. Входной высоковольтный конденсатор С1 может иметь емкость от 0,033 до 0,1 мкФ. Варистор Rv можно применить практически любой с рабочим напряжением 230.250 В. Резистор R3выбирается в зависимости от требуемого выходного напряжения. При его отсутствии (выходы 5 и 6 замкнуты) выходное напряжение чуть более 5 В, при сопротивлении 20 кОм выходное напряжение - около 23 В. Вместо резистора можно включить стабилитрон с необходимым напряжением стабилизации (от 5 до 21 В). К остальным деталям особых требований нет, за исключением выбора рабочего напряжения электролитических конденсаторов (формулы для расчета приведены на схеме).

    Учитывая потенциальную опасность бестрансформаторных источников, в ряде случаев может представлять интерес компромиссный вариант: с гасящим конденсатором и трансформатором (рис.16).

    Здесь подойдет трансформатор с высоковольтной вторичной обмоткой, поскольку необходимое выпрямленное напряжение устанавливается подбором емкости конденсатора С1. Главное, чтобы обмотки трансформатора обеспечивали требуемый ток.

    Чтобы устройство не вышло из строя при отключении нагрузки, к выходу моста VD1...VD4 следует подключить стабилитрон Д815П. В нормальном режиме он не работает, поскольку его напряжение стабилизации выше рабочего на выходе моста. Предохранитель FU1 защищает трансформатор и стабилизатор при пробое конденсатора С1.

    В источниках такого вида в цепи последовательно соединенных емкостного (конденсатор С1) и индуктивного (трансформатор Т1) сопротивлений может возникать резонанс напряжения. Об этом следует помнить при их налаживании и контролировать напряжения осциллографом.

    Смотрите другие статьи раздела .

    Есть немало электронных устройств, которым потребуется около 200 вольт постоянного напряжения - это могут быть различные измерители, ламповая маломощная техника, импульсные зарядки смартфонов и мобильников. А ещё больше проблема усложняется тогда, когда питание не от розетки 220 вольт, а от батареи или автомобильного аккумулятора. Чтоб не пришлось искать громоздкий и довольно дорогостоящий по нынешним временам трансформатор, разработчики создали простой DC-DC импульсный регулятор, способный преобразовать 12 вольт в высокое.

    Модуль основан на MAX1771 - это типичный повышающий DC-DC-инвертор. Эта микросхема работает на частотах переключения до 300 кГц, что позволяет использовать миниатюрные компоненты поверхностного монтажа - SMD. Преобразователь принимает входные напряжения в пределах от 2 до 16 вольт, а выходное напряжение настраивается примерно на 200 вольт, с помощью внешних резисторов и потенциометров. Этого хватит для питания, например, схемы , собранного на лампах.

    Микросхема MAX1771 управляет мощным N-канальным МОП-транзистором, и с помощью индуктивности и фаст-диодов, производится высоковольтное преобразование. Схема способна работать с токами до 2 ампер на входе, или с 24 ваттами выходной мощности. Несложный рассчёт показывает, что это около 0,1 А при заданном напряжении. КПД примерно 90%.

    Обзор схем бестрансформаторных источников питания (10+)

    Бестрансформаторные источники питания - Понижающие

    При проектировании малогабаритных устройств применение трансформаторов иногда является нежелательным. Кроме того при росте мировых цен на сырье (медь и железо) стоимость трансформаторов постоянно растет, в то время как стоимость других радиоэлектронных компонентов в целом снижается. В этой ситуации становится актуальным применение импульсных источников питания, в которых трансформаторы имеют небольшой размер и вес, а значит, небольшую стоимость, или проектирование бестрансформаторных источников питания и преобразователей напряжения. Мы планируем цикл статей о проектировании импульсных устройств, подпишитесь на новости , если эта тема Вам интересна. Сейчас остановимся на бестрансформаторных решениях.

    У всех таких схем имеется общий недостаток - отсутствие гальванической развязки с высоковольтными шинами питания. Так что пользователи проектируемых устройств должны быть конструктивно защищены от любого контакта с элементами схемы, должна быть предусмотрена защита от влаги, попадания посторонних предметов. К схемам с бестрансформаторным питанием предъявляются такие же требования по безопасности, как и к высоковольтным схемам. Потенциал некоторых цепей относительно земли у них может быть равен потенциалу сетевого напряжения, даже если внутри самой схемы напряжение не превышает десятков вольт.

    Бестрансформаторное питание обычно применяется в схемах автоматики и схемах формирования импульсов для преобразователей напряжения. В этих случаях гальваническую развязку обеспечить все равно невозможно, так как управляющие импульсы должны подаваться непосредственно на силовые элементы, находящиеся под сетевым напряжением.

    К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

    Если что-то непонятно, обязательно спросите!
    Задать вопрос. Обсуждение статьи. сообщений.

    Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не
    Схема импульсного источника питания ярких светодиодов....


    Принцип работы, самостоятельное изготовление и наладка импульсного силового прео...


    Ремонт импульсного источника питания. Отремонтировать блок питания или преобразо...


    Как работает повышающий стабилизированный преобразователь напряжения. Где он при...


    Данная статья является дальнейшим развитием идеи бестрансформаторного питания .

    Во всех приведенных ниже схемах нумерация элементов, выполняющих одно и то же назначение, сохранена от схемы к схеме. Дополнительные новые элементы схем имеют сквозную нумерацию. Если нет какого-то очередного номера элемента, это значит, что он был в предыдущей схеме (а на данной этого номера просто нет). 1.Усилитель низкой частоты

    Схема УНЧ (рис.1) известна как трансформаторная. Особенность ее - в отсутствии силового трансформатора. Питание анодов ламп осуществляется от сети 220 В по схеме удвоения напряжения и Ua-к=620 В. Накал ламп - от сети 220 В через токоограничивающий конденсатор С6. В качестве Тр1, Тр2 можно использовать силовые трансформаторы от старых ламповых радиоприемников со средней точкой во вторичной обмотке (как правило, в них устанавливали кенотроны типа 5Ц4С, 5ЦЗС и т.д.). Сетевая обмотка этих трансформаторов используется как высокомный выход при работе в линию на абонентов, накальная обмотка - как низкоомный выход.


    Рис.1

    В любительских условиях в качестве выходного трансформатора может использоваться силовой от ламповых радиоприемников без средней точки на вторичной обмотке (например от "Рекордов"), но для этого нужно сетевую и повышающую обмотки включить последовательно, а точка соединения и будет средней.

    В качестве входного трансформатора, в любительских условиях может использоваться выходной трансформатор от ламповых усилителей старых радиоприемников с двухтактным выходным каскадом (две лампы 6П14П, две 6П6С и т.д.).

    Данный усилитель обеспечивает при Рвх=20...30 Вт на выходе Рвых=120... 130 Вт. Конденсаторы С4, С5 ограничивают анодный ток ламп, пропорционально своей емкости, например если С4=С5=20 мкФ каждый, то анодный ток ламп ограничен на уровне 400 мА.

    Использовать С4, С5 большей емкости нет смысла, т.к. анодный ток двух ламп не превышает 350 мА. К тому же, чем больше емкость этих конденсаторов, тем больше бросок тока при первом включении в сеть 220 В и возможен пробой диодов. В качестве диодов могут быть использованы Д226 или им подобные, включенные попарно параллельно. 2. Широкополосный усилитель мощности KB

    Схемотехника усилителя (рис.2) практически ничем не отличается от УНЧ, только трансформаторы выполнены на ферритовых кольцах. Причем до частот 7 МГц с успехом можно применять кольца 2000НН, но лучше - 400...600НН; при работе до 28 МГц - 50 ВЧ, при этом обеспечивается минимальный завал АЧХ на ВЧ диапазонах. Должна быть хорошая изоляция между первичной и вторичной обмотками. Обмотки содержат по 12...15 витков каждая.


    Рис.2 (нажмите для увеличения)

    Выходной трансформатор - типоразмера К40х25х25 или близкий к нему. Входной трансформатор - К16х8х6 или близкий к нему. Типоразмеры могут быть обеспечены за счет набора из нескольких колец. При Рвх=30 Вт ток анодов ламп составлял 250 мА при Uа-к=620B. 3. Усилитель мощности KB с общим катодом

    Как известно, схема включения ламп с общим катодом требует полного набора питающих напряжений: анодного, экранной сетки, управляющей сетки, накального (рис.3).

    Обычная схема удвоения сети (220В) дает источник для питания анодно-экранных цепей ламп (+620В +310 В). Для питания накалов ламп используется конденсатор С6, который ограничивает ток накалов.


    Рис.3 (нажмите для увеличения)

    Источник отрицательного напряжения собран на Tp1, V9...V12, С20. В качестве Тр1 используется малогабаритный трансформатор, т.к. потребление по управляющим сеткам очень мало.

    Хочу заострить внимание на том, что подобные схемы имеют два "общих провода". Один -для схемы по постоянному току, это минусовая обкладка конденсатора С5, обозначенная 0В. Относительно этой точки нужно производить измерения по постоянному току. Причем при этих измерениях надо соблюдать технику безопасности, т.к. такие цели не имеют гальванической развязки от сети. Например, чтобы измерить анодное и экранное напряжения, нужно "-" вольтметра подключить к точке 0В, а "+" вольтметра - на ножку 3 V5 либо V6. Это и есть напряжение на экранных сетках. Если на ножку 6 V5 либо V6 - это и будет анодное напряжение.

    Чтобы измерить "-" на управляющей сетке, нужно поменять полярность вольтметра, т.е."+" вольтметра подать в точку 0В, а "-" - на ножку 2 V5 либо V6 и резистором R1 выставить ток покоя ламп в режиме ТХ - передача (без сигнала на входе). В режиме приема (RX) на управляющих сетках - максимальный "-" и лампы закрыты, ток через них равен нулю. Режим ламп выставляется резистором R1 в режиме несущей по прибору РА1. Двигая R1 в сторону контакта реле Р2, уменьшают "-" на управляющих сетках до тех пор, пока идет линейный прирост показаний РА1. Как только линейный прирост прекратился, R1 слегка возвращают назад и фиксируют лаком.

    Вторым общим проводом является корпус усилителя - это общий провод для радиочастотного сигнала. И все измерения ВЧ-напряжений; если в этом есть необходимость, производятся относительно корпуса. Большинство элементов усилителя некритичны и могут значительно отличаться по номиналам. Например емкости С1, С2, С7, С8, С19, С1б могут колебаться в пределах 1000 ПФ...10000 пФ. Главное, чтобы они выдерживали напряжения схемы, т.е. С1, С2 - не менее 250 В, С8 - не менее 1000 В (он может быть набран из двух на 500 В), С7 - не менее 500 В, С19 - не менее 250 В, С16 - любой. С 14 - 80...200 пФ.

    Критичен только один элемент - С9. Он должен иметь значительный запас по напряжению - не менее 1000 В, а главное, емкость его не должна быть более 3000 пФ. С9 - это та "изюминка" схемы, которая обеспечивает безопасность при бестрансформаторном питании. В случае обрыва общего заземления ток между корпусом и общим заземлением не достигает величины, поражающей организм человека, т.к. ограничен емкостью С9< 3000 пФ на уровне 250...300 мкА в самом неблагоприятном случае. Еще одна особенность- вместо дросселя в управляющей сетке используется резистор R5. Как показал опыт, использование резистора значительно попытает устойчивость каскада к самовозбуждению.

    Также достаточно удачно решен вопрос использования контуров L7, L8, L9, L10, L11, L12. Они используются реверсивно, т.е. при приеме (RX) являются входными узкополосными с подстройкой входа С18, а при передаче (ТХ) - согласующими низкое выходное сопротивление трансивера (как правило, 50...75 Ом) с высоким входным сопротивлением лампового усилителя по схеме с общим катодом.

    При передаче (ТХ) С 17 подключается параллельно C18, но т.к. емкость С17 мала (2пФ), она почти не влияет на настройку контуров L7, L8, L9, L10, L11, L12, аналогично Ссв подключается параллельно С12 и также не влияет на настройку контура. Ссв выполнен в виде одного-двух витков вокруг монтажного провода, соединяющего С10 с С12. Этот кусочек монтажного провода выполнен из высоковольтного провода, либо из коаксиального кабеля, с которого снята внешняя оплетка, а витки намотаны поверх толстого капронового наполнителя. Такой конденсатор связи выдерживает большие реактивные напряжения и токи и может применяться в более мощных усилителях. После малой емкости (Ссв) - и малые напряжения, поэтому Р1 не очень критично к зазору между контактами.

    Данная схема коммутации антенны с RX на ТХ с реверсивным использованием элементов П-контура и входного "узкополосного" контура позволяет производить "холодную" настройку на корреспондента - по максимальной громкости, ручками С12, С13, С18, без излучения "несущей" в эфир, что значительно сокращает взаимные помехи и настройку на частоте ДХ-ов. Вместо L7, L8, L9, L10, L11, L12 можно обойтись всего двумя катушками: одна настраивается на ВЧ-диапазонах - на 28 МГц минимум С18, другая - на 7,0 МГц с минимумом С18, но максимальная емкость С18 должна быть до 500 пФ (чтобы перекрывать оставшиеся диапазоны).

    Отводы у катушек L7, L8, L9, L10, L11, L12 делают приблизительно от 1/З витков (от заземленного конца), но лучше подобрать на каждом диапазоне по максимальному ВЧ напряжению на управляющих сетках ламп.

    Катушки выполняются на любых каркасах с сердечниками (и даже без них). Главное - их нужно настроить по максимальной громкости принимаемых станции (при отсутствии приборов), возможно, придется немного изменить емкости, подключенные параллельно им.

    Лампы V5, V6 включены на сложение мощностей в диапазоне 28 МГц; L5 и L6 настраиваются на максимум выходной мощности на 28 МГц сдвигая и раздвигая витки. При этом нужно помнить, что L5, L6, L4 находятся под анодным напряжением и нужно соблюдать все меры предосторожности.

    L4 для снижения габаритов П-контура и удобства механического крепления выполнена на тороидальном кольце из текстолита, гетинакса, фторопласта и т.д., крепится прямо на галете. Отводы на L4 подбираются экспериментально, в зависимости от входного сопротивления антенны.

    L5, L6 - бескаркасные, они намотаны на оправе диаметром 15 мм и содержат б витков провода ПЭВ-1 1,5мм, длина намотки - 25 мм.

    L4 - 60 витков, намотка - виток к витку, отводы - ориентировочно от 4, 18, 32 витков, первые 4 витка - проводом 1 мм, остальные-0,6мм.

    Дроссель L3 намотан на любом изоляционном материале и содержит приблизительно 160 витков провода 0,25...0,27 мм, часть витков намотана виток к витку, остальные-внавал.Намотка виток к витку соединена cL4 ("горячий" конец L3).

    Катушки L7, L8, L9, L10, L11, L12 - на каркасе не менее 6 мм с сердечником СЦР-1.
    L7 - 10 витков ПЭЛ 0,51, отвод от 3-го снизу;
    L8 - 12 витков ПЭЛ 0,51, отвод от 4-го снизу;
    L9 - 16 витков ПЭЛ 0,25, отвод от 5-го снизу;
    L10 - 25 витков ПЭЛ 0,25, отвод от 8-го снизу;
    L11 - 35 витков ПЭЛ 0.25, отвод от 10-го снизу;
    L12 - 45 витков ПЭЛ 0,25, отвод от 12-го снизу;

    С21 -10пФ; С22-15пФ; С23-- 68 пФ; С24 - 120 пФ; С25 - 200 пФ; С26-430пФ.

    P1, P2 могут соединяться как по схеме рис.З, так и параллельно, может быть применено одно реле с несколькими группами контактов, например РЭС-9, РЭС-22 и т.д. Тип реле также зависит от Uупр. приходящего с трансивера. 4. Гибридный усилитель мощности

    Гибридные усилители известны многим радиолюбителям. На рис.4. представлены некоторые подробности состыковки данных усилителей с бестрансформагорным источником питания.

    На транзисторе VI 4 и резисторе R7 собран регулятор напряжения для экранных сеток ламп. Резисторы R4 и R6 являются токоограничивающими (своего рода защита) при крайних положениях R7, а также и в аварийных ситуациях. R5 создает ток утечки с перехода база-эмиттер для нормальной работы регулятора напряжения. Резистором R1 выставляется отрицательное напряжение на управляющих сетках ламп, при приеме (RX) лампы заперты максимальным напряжением (отрицательным). R2-защита от "перекачки" усилителя и создает частичное автоматическое смещение на управляющих сетках ламп.

    R8, R9, R10, R11 - нагрузка для трансивера. Эти же резисторы определяют входное сопротивление усилителя.

    Схема рис.4 имеют общий провод по постоянному току, изолированный от корпуса. Им является минусовая обкладка конденсатора С5 (обозначена точкой 0В). Относительно этой точки нужно производить все замеры по постоянному току в схеме.


    Рис.4 (нажмите для увеличения)

    Способы и методика настройки сводятся к правильному выбору начального тока через V 13, который должен быть не меньше начального тока (в начале прямолинейного участка характеристики V13). Такой же ток через лампы должен быть выставлен резисторами R1, R7. Хорошие результаты получаются при использовании ламп 6П45С.

    С14 должен быть высоковольтным, как и С9.

    Хочу предостеречь радиолюбителей от ошибки, которую многие совершают при повторении подобных схем. Многие, контролируя анодный ток ламп, пытаются получить максимально возможный ток. Это неправильно, потому что подобные схемы способны обеспечить большие анодные токи, но выходная мощность при этом им (токам) не соответствует. Так, мне через одну ГУ-50 (по данной схеме) удавалось получить ток до 450 мА (Uак=620 В), но выходной мощности в 200 Вт не было, что значительно сокращало срок службы (быстро терялась эмиссия катода), вызывало TVI, т.е. схема работала как усилитель постоянного тока.

    Учитывая сказанное, нужно "выжимать" не максимально возможные анодные токи (они только косвенно связаны с выходной мощностью), а максимальное ВЧ -напряжение на эквиваленте, либо на антенне по индикатору выхода. При приросте ВЧ-напряжения также нужно использовать только прямолинейный участок и не заводить в зону "насыщения". Лампы включены на сложение мощностей, параметры П-контура - типовые (изложены в предыдущем разделе). Можно вместо КП904 использовать биполярный КТ907. Эмиттер включается вместо истока, коллектор - вместо стока. Необходимое смещение на базу подается через мощный резистор 500м сдвижка потенциометра 3,3 к, включенного между"-" выпрямителя и нижним выводом R7, который соответственно отключается от "-" выпрямителя. Этим потенциометром устанавливают начальный ток каскада. Между движком потенциометра и "-" выпрямителя включают блокировочный конденсатор на небольшое (<100В) напряжение, 5. Усилитель на ГУ74Б

    На схеме рис.5 представлен усилитель мощности на лампе ГУ74Б, которой на аноде нужно 1200В. Это напряжение получается за счет сложения напряжений двух источников. Первый собран по схеме удвоения напряжения без трансформатора от сети 220 В и выдает два напряжения (относительно точки 0В): +310 В и +620 В. Этих напряжений вполне достаточно для питания экранных сеток большинства ламп с высоким анодным напряжением.


    Рис.5 (нажмите для увеличения)

    Второй источник (его можно условно назвать"вольтдобавкой") собран на трансформаторе (ТС-270). Для того чтобы, получить суммарное напряжение 1200 В, на вторичной обмотке трансформатора должно быть приблизительно 400 В переменного напряжения. После выпрямления диодами V10...V17 и фильтрации конденсаторами С27, С28 постоянное напряжение получается где-то на 1/3 больше - в сумме с первым (+620 В) достигается напряжение, необходимое для работы лампы. Так как эти источники работают на сложение напряжений и мощностей, то и мощность потребления распределяется приблизительно пропорционально их напряжениям,а это значит, что можно смело использовать трансформатор с габаритной мощностью меньше как минимум вдвое, чем при обычной трансформаторной схеме. Источник отрицательного напряжения собран на диоде V9 и конденсаторе С20. Так как схема однополупериодная, емкость С20 должна быть достаточно большой - 200 мкФ.

    Вместо дросселя в управляющей сетке применен резистор R5, что делает каскад более устойчивым к самовозбуждению.

    Применено последовательное питание лампы через элементы П-контура. Это имеет свои недостатки - элементы П-контура находятся под высоким напряжением, и свои достоинства - при последовательном питании КПД на ВЧ диапазонах несколько выше, а требования к дросселю L3 на электрическую прочность несколько ниже, т.к. он стоит после элементов П-контура (L5, L4).

    П-контур может быть выполнен и по типовой схеме параллельного питания.

    Несколько повышенные требования к конденсаторам С12, С13 - они должны иметь достаточный зазор между пластинами. С12 при заведенных роторных пластинах должен иметь зазор не менее 1,5мм.С10, С11 должны выдерживать большие реактивные мощности при напряжении не менее 2,5 кВ. Конденсатор С9 обеспечивает технику безопасности, и его емкость не должна быть более 3000 пФ. С4, С5, С27, С28 - 180 мкФ х 350 В каждый.

    Ввод усилителя мощности в работу производится в следующей последовательности.

    1. Включается S1 (все остальные должны быть выключены). Начинает работать мотор обдува лампы, вся схема включается на пониженное напряжение через конденсаторы С, С". Они предотвращают бросок тока на заряд конденсаторов С4, С5, С27, С28.

    2. Через несколько секунд включается S1 -он подает в схему полное напряжение, при этом появляется максимальное отрицательное напряжение на управляющей сетке лампы и полное накальное напряжение - идет прогрев лампы.

    3. Через несколько минут, когда накал прогрел лампу, включается тумблер ВК2. Если в схеме нет аварийных режимов, включается ВК1. При работе в эфире коммутацию с приема на передачу осуществляет реле P1.

    Отключение усилителя осуществляется в обратном порядке.

    Установка режима осуществляется резистором R1. Линейный прирост мощности контролируют по индикатору выхода РА1. Если прирост мощности прекратился или идет слишком медленно (зона насыщения), нужно R1 немножко вернуть назад и зафиксировать.

    S2, S1, S1", ВК1, ВК2 должны иметь рычажки переключения из изоляционного материала. Кроме того, желательно их установить на изоляционной декоративной подкладке(изолировать от корпуса) из толстого оргстекла, текстолита и т.д.

    L4 с целью уменьшения габаритов и удобства крепления крепится прямо на S2. Желательно выполнить его на тороидальном кольце из фторопласта, гетинакса и т.д.

    Контура L7, L8, L9, L10, L11, L12 - такие же как в разделе 3.

    Если ваш трансивер не "раскачивает" данный усилитель, не огорчайтесь -в него можно установить еще один каскад усиления по схеме рис.6. Это лампы типа 6П15П,6П18П,6П9 (или любая другая лампа-триод достаточной мощности), включенные триодом.


    Рис.6

    Накал берется с ТС-270 (-6,3 В). Общий провод подключается в точку 0В -это "-" конденсатора С5. Анодное напряжение берется с "+" С4 (+620 В). Отрицательное напряжение берется с R1 (рис.5а) параллельным подключением. Вход-выход каскада подключается в точку разрыва (на рис.5 помечено "х") конденсатора С14. Данные контуров - такие же как в разделе 3.

    L1,L2 мотаются на феррите более толстым проводом - 0,37...0,4 мм, 25...30 витков.

    Используя данную схемотехнику, можно получить усилители малых габаритов (настольные вместе с источником) с хорошей энергетикой.

    Литература

    1. В.Кулагин. Усилитель мощности КВ "Ретро". РЛ, 8/95, с.26.

    Читайте и пишите полезные