Как в домашних условиях собрать инверторный сварочный аппарат. Самодельный сварочный инвертор из доступных деталей своими руками Самодельная инверторная сварка

Изготовление сварочного инвертора в домашних условиях – очень увлекательное дело, особенно для любителей самоделок. При этом можно и не иметь глубочайших электротехнических знаний, просто делать все строго в определенном порядке. К тому же, не будет лишним понять принцип работы такого устройства.

Основной смысл в том, чтобы собирать все самому – это приличная экономия средств, если основные показатели аппарата будут приблизительно такими же, как у тех, что предлагает торговая сеть.

Да и внешне самодельный сварочный инвертор, может не отличаться от заводского. Работу можно будет проводить, применяя электроды 3-5 миллиметров в диаметре при дуге до 10 миллиметров.


Основные данные

Собственноручно собранный по простой схеме сварочный инвертор сможет иметь данные вполне приличного устройства:

  • напряжение на входе 220 вольт;
  • на входе ток 32 ампера;
  • на выходе ток 250 ампера.

Обычно используют напряжение 220 вольт, но можно сделать аппарат и для напряжения 380 вольт. Трехфазные аппараты имеют несколько выше показатели.

Сборка блока питания

Монтаж начинается с намотки трансформатора, его функция – это обеспечение стабильным напряжением следующих за ним деталей. Для его изготовления используют феррит Ш 7х7 (можно Ш 8х8), на который наматывают разные по количеству витков обмотки: сто, пятнадцать, пятнадцать и двадцать, соответственно 0,3; 1; 0,2 и 0,3 миллиметров.

Для снижения вредного влияния возможного перепада сетевого напряжения, кольца провода необходимо класть на всю ширину катушки.

Первичную обмотку надо изолировать стеклотканью и намотать экран из провода 0,3 мм. Он должен покрыть всю ширину каркаса, а направление витков – совпадать с предыдущей обмоткой.


Последовательность работы с остальными обмотками такая же. На выходе должно быть от 20 до 25 вольт. Его можно отрегулировать подбором деталей. Синусоидальный ток преобразуется в постоянный с помощью диодов, соединенный, как «косой мост», а для охлаждения необходимо подобрать радиаторы, возможно, со старого компьютера.

Один охладитель закрепляется к верхним частям деталей и изолируется слюдяной прокладкой. Второй – к нижней части моста и крепится с использованием термопасты.

Выводы диодного моста направляются туда же, куда будут выходить и контакты транзисторов, что работают как преобразователи. Длина проводов, которые соединяют мост и транзисторы – не больше 15 сантиметров. Блок питания и инверторный блок разделяются металлической пластиной, приваренной к основанию.

Монтаж силового блока

Этот блок представляет собой трансформатор, что снижает U и увеличивает ток. Для его изготовления нужна пара сердечников Ш 20х208. Для изоляции их друг от друга модно использовать бумагу.

Намотка выполняется полоской из меди, ширина которой 40 миллиметров, а толщина – 0,25 миллиметров. Для прокладки витков можно использовать бумагу хорошего качества, а вторичную обмотку формируют, перекладывая фторопластовую полосу.


Монтировать понижающий трансформатор, используя толстый провод, не надо потому, что ток, имея высокую частоту, проходит по поверхности проводника и тот не нагревается внутри.

Нагрев деталей аппарата нужно уменьшать принудительным охлаждением. Для этой цели подойдет вентилятор из системного блока компьютера.

Сборка инверторного блока

Чтобы сделать сварочный инвертор своими руками необходимо перейти к следующему этапу – монтажу инверторного блока. Так, как этот узел преобразовывает ток из постоянного в переменный, нужны мощные транзисторы, которые будут то открываться, то закрываться, создавая высокую частоту.

В инструкцию для изготовления простого инвертора можно включить схему инверторного блока.

Есть смысл этот блок монтировать с применением нескольких транзисторов, чтобы частота была более стабильной и при выполнении сварки аппарат меньше гудел.


Корпус

Пошаговая сборка инвертора своими руками предусматривает подбор надежного корпуса для такого изделия. Для этой цели вполне подойдет старый системный блок от компьютера (чем древнее, тем лучше потому, что в нем толще металл). Можно самому изготовить коробку из листового металла, а внизу использовать гетинакс в пол сантиметра или больше.

Различные виды самодельных сварочных инверторов имеют общую черту – это управление работой аппарата. На передней панели устанавливают выключатель, ручку регулировки сварочного тока, контакты для проводки, контрольные лампы.

Таким образом, чтобы обзавестись таким нужным в домашней мастерской аппаратом, не обязательно покупать готовый инвертор. Можно изучить необходимую теорию, приобрести детали и самому собрать сварку, которая будет надежно работать.

Фото сварочного инвертора своими руками

Вашему вниманию представлена схема сварочного инвертора, который вы можете собрать своими руками. Максимальный потребляемый ток - 32 ампера, 220 вольт. Ток сварки - около 250 ампер, что позволяет без проблем варить электродом 5-кой, длина дуги 1 см, переходящим больше 1 см в низкотемпературную плазму. КПД источника на уровне магазинных, а может и лучше (имеется в виду инверторные).

На рисунке 1 приведена схема блока питания для сварочного.

Рис.1 Принципиальная схема блока питания

Трансформатор намотан на феррите Ш7х7 или 8х8
Первичка имеет 100 витков провода ПЭВ 0.3мм
Вторичка 2 имеет 15 витков провода ПЭВ 1мм
Вторичка 3 имеет 15 витков ПЭВ 0.2мм
Вторичка 4 и 5 по 20 витков провода ПЭВ 0.35мм
Все обмотки необходимо мотать во всю ширину каркаса, это дает ощутимо более стабильное напряжение.


Рис.2 Принципиальная схема сварочного инвертора

На рисунке 2 - схема сварочника. Частота - 41 кГц, но можно попробовать и 55 кГц. Трансформатор на 55кгц тогда 9 витков на 3 витка, для увеличения ПВ трансформатора.

Трансформатор на 41кгц - два комплекта Ш20х28 2000нм, зазор 0.05мм, газета прокладка, 12вит х 4вит, 10кв мм х 30 кв мм, медной лентой (жесть) в бумаге. Обмотки трансформатора сделаны из медной жести толщиной 0.25 мм шириной 40мм обернутые для изоляции в бумагу от кассового аппарата. Вторичка делается из трех слоев жести (бутерброд) разделенных между собой фторопластовой лентой, для изоляции между собой, для лучшей проводимости высоко- частотных токов, контактные концы вторички на выходе трансформатора спаяны вместе.

Дроссель L2 намотан на сердечнике Ш20х28, феррит 2000нм, 5 витков, 25 кв.мм, зазор 0.15 - 0.5мм (два слоя бумаги от принтера). Токовый трансформатор – датчик тока два кольца К30х18х7 первичка продетый провод через кольцо, вторичка 85 витков провод толщиной 0.5мм.

Сборка сварочного

Намотка трансформатора

Намотку трансформатора нужно делать с помощью медной жести толщиной 0.3мм и шириной 40мм, ее нужно обернуть термобумагой от кассового аппарата толщиной 0.05мм, эта бумага прочная и не так рвется как обычная при намотке трансформатора.

Вы скажите, а почему не намотать обычным толстым проводом, а нельзя потому что этот трансформатор работает на высокочастотных токах и эти токи вытесняются на поверхность проводника и середину толстого провода не задействует, что приводит к нагреву, называется это явление Скин эффект!

И с ним надо бороться, просто надо делать проводник с большой поверхностью, вот тонкая медная жесть этим и обладает она имеет большую поверхность по которой идет ток, а вторичная обмотка должна состоять из бутерброда трех медных лент разделенных фторопластовой пленкой, она тоньше и обернуты все эти слои в термобумагу. Эта бумага обладает свойством темнеть при нагреве, нам это не надо и плохо, от этого не будет пускай так и останется главное, что не рвется.

Можно намотать обмотки проводом ПЭВ сечением 0.5…0.7мм состоящих из нескольких десятков жил, но это хуже, так как провода круглые и состыкуются между собой с воздушными зазорами, которые замедляют теплообмен и имеют меньшую общую площадь сечения проводов вместе взятых в сравнении с жестью на 30%, которая может влезть окна ферритового сердечника.

У трансформатора греется не феррит, а обмотка поэтому нужно следовать этим рекомендациям.

Трансформатор и вся конструкция должны обдуваться внутри корпуса вентилятором на 220 вольт 0.13 ампера или больше.

Конструкция

Для охлаждения всех мощных компонентов хорошо использовать радиаторы с вентиляторами от старых компьютеров Pentium 4 и Athlon 64. Мне эти радиаторы достались из компьютерного магазина делающего модернизацию, всего по 3…4$ за штуку.

Силовой косой мост нужно делать на двух таких радиаторах, верхняя часть моста на одном, нижняя часть на другом. Прикрутить на эти радиаторы диоды моста HFA30 и HFA25 через слюдяную прокладку. IRG4PC50W нужно прикручивать без слюды через теплопроводящую пасту КТП8.

Выводы диодов и транзисторов нужно прикрутить на встречу друг другу на обоих радиаторах, а между выводами и двумя радиаторами вставить плату, соединяющею цепи питания 300вольт с деталями моста.

На схеме не указано нужно на эту плату в питание 300V припаять 12…14 штук конденсаторов по 0.15мк 630 вольт. Это нужно, чтобы выбросы трансформатора уходили в цепь питания, ликвидируя резонансные выбросы тока силовых ключей от трансформатора.

Остальная часть моста соединяется между собой навесным монтажом проводниками не большой длины.

Ещё на схеме показаны снабберы, в них есть конденсаторы С15 С16 они должны быть марки К78-2 или СВВ-81. Всякий мусор туда ставить нельзя, так как снабберы выполняют важную роль:
первая - они глушат резонансные выбросы трансформатора
вторая - они значительно уменьшают потери IGBT при выключении так как IGBT открываются быстро, а вот закрываются гораздо медленнее и во время закрытия емкость С15 и С16 заряжается через диод VD32 VD31 дольше чем время закрытия IGBT, то есть этот снаббер перехватывает всю мощь на себя не давая выделяться теплу на ключе IGBT в три раза чем было бы без него.
Когда IGBT быстро открываются, то через резисторы R24 R25 снабберы плавно разряжаются и основная мощь выделяется на этих резисторах.

Настройка

Подать питание на ШИМ 15вольт и хотя бы на один вентилятор для разряда емкости С6 контролирующую время срабатывания реле.

Реле К1 нужно для замыкания резистора R11, после того, когда зарядятся конденсаторы С9…12 через резистор R11 который уменьшает всплеск тока при включении сварочного в сеть 220вольт.

Без резистора R11 на прямую, при включении получился бы большой БАХ во время зарядки емкости 3000мк 400V, для этого эта мера и нужна.

Проверить срабатывание реле замыкающие резистор R11 через 2…10 секунд после подачи питания на плату ШИМ.

Проверить плату ШИМ на присутствие прямоугольных импульсов идущих к оптронам HCPL3120 после срабатывания обоих реле К1 и К2.

Ширина импульсов должна быть шириной относительно нулевой паузе 44% нулевая 66%

Проверить драйвера на оптронах и усилителях ведущих прямоугольный сигнал амплитудой 15вольт убедится в том, что напряжение на IGBT затворах не превышает 16вольт.

Подать питание 15 Вольт на мост для проверки его работы на правильность изготовления моста.

Ток потребления при этом не должен превышать 100мА на холостом ходу.

Убедится в правильной фразировке обмоток силового трансформатора и трансформатора тока с помощью двух лучевого осциллографа.

Один луч осциллографа на первичке, второй на вторичке, чтобы фазы импульсов были одинаковые, разница только в напряжении обмоток.

Подать на мост питание от силовых конденсаторов С9…С12 через лампочку 220вольт 150..200ватт предварительно установив частоту ШИМ 55кГц подключить осциллограф на коллектор эмиттер нижнего IGBT транзистора посмотреть на форму сигнала, чтобы не было всплесков напряжения выше 330 вольт как обычно.

Начать понижать тактовую частоту ШИМ до появления на нижнем ключе IGBT маленького загиба говорящем о перенасыщении трансформатора, записать эту частоту на которой произошел загиб поделить ее на 2 и результат прибавить к частоте перенасыщения, например перенасыщение 30кГц делим на 2 = 15 и 30+15=45, 45 это и есть рабочая частота трансформатора и ШИМа.

Ток потребления моста должен быть около 150ма и лампочка должна еле светиться, если она светится очень ярко, это говорит о пробое обмоток трансформатора или не правильно собранном мосте.

Подключить к выходу сварочного провода длиной не мене 2 метров для создания добавочной индуктивности выхода.

Подать питание на мост уже через чайник 2200ватт, а на лампочку установить силу тока на ШИМ минимум R3 ближе к резистору R5, замкнуть выход сварочного проконтролировать напряжение на нижнем ключе моста, чтобы было не более 360вольт по осциллографу, при этом не должно быть ни какого шума от трансформатора. Если он есть - убедиться в правильной фазировке трансформатора -датчика тока пропустить провод в обратную сторону через кольцо.

Если шум остался, то нужно расположить плату ШИМ и драйвера на оптронах подальше от источников помех в основном силовой трансформатор и дроссель L2 и силовые проводники.

Еще при сборке моста драйвера нужно устанавливать рядом с радиаторами моста над IGBT транзисторами и не ближе к резисторам R24 R25 на 3 сантиметра. Соединения выхода драйвера и затвора IGBT должны быть короткие. Проводники идущие от ШИМ к оптронам не должны проходить рядом с источниками помех и должны быть как можно короче.

Все сигнальные провода от токового трансформатора и идущие к оптронам от ШИМ должны быть скрученные, чтобы понизить уровень помех и должны быть как можно короче.

Дальше начинаем повышать ток сварочного с помощью резистора R3 ближе к резистору R4 выход сварочного замкнут на ключе нижнего IGBT, ширина импульса чуть увеличивается, что свидетельствует о работе ШИМ. Ток больше - ширина больше, ток меньше - ширина меньше.

Ни какого шума быть не должно иначе выйдут из строя IGBT .

Добавлять ток и слушать, смотреть осциллограф на превышение напряжения нижнего ключа, чтобы не выше 500вольт, максимум 550 вольт в выбросе, но обычно 340 вольт.

Дойти до тока, где ширина резко становиться максимальной говорящим, что чайник не может дать максимальный ток.

Все, теперь на прямую без чайника идем от минимума до максимума, смотреть осциллограф и слушать, чтобы было тихо. Дойти до максимального тока, ширина должна увеличиться, выбросы в норме, не более 340вольт обычно.

Начинать варить, в начале 10 секунд. Проверяем радиаторы, потом 20 секунд, тоже холодные и 1 минуту трансформатор теплый, спалить 2 длинных электрода 4мм трансформатор горечеватый

Радиаторы диодов 150ebu02 заметно нагрелись после трех электродов, варить уже тяжело, человек устает, хотя варится классно, трансформатор горяченький, да и так уже не кто не варит. Вентилятор, через 2 минуты трансформатор доводит до теплого состояния и можно варить снова до опупения.

Ниже вы можете скачать печатные платы в формате LAY и др. файлы

Евгений Родиков (evgen100777 [собака] rambler.ru). По всем возникшим вопросам при сборке сварочника пишите на E-Mail.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Блок питания
Линейный регулятор

LM78L15

2 В блокнот
AC/DC преобразователь

TOP224Y

1 В блокнот
ИС источника опорного напряжения

TL431

1 В блокнот
Выпрямительный диод

BYV26C

1 В блокнот
Выпрямительный диод

HER307

2 В блокнот
Выпрямительный диод

1N4148

1 В блокнот
Диод Шоттки

MBR20100CT

1 В блокнот
Защитный диод

P6KE200A

1 В блокнот
Диодный мост

KBPC3510

1 В блокнот
Оптопара

PC817

1 В блокнот
C1, C2 10мкФ 450В 2 В блокнот
Электролитический конденсатор 100мкФ 100В 2 В блокнот
Электролитический конденсатор 470мкФ 400В 6 В блокнот
Электролитический конденсатор 50мкФ 25В 1 В блокнот
C4, C6, C8 Конденсатор 0.1мкФ 3 В блокнот
C5 Конденсатор 1нФ 1000В 1 В блокнот
С7 Электролитический конденсатор 1000мкФ 25В 1 В блокнот
Конденсатор 510 пФ 2 В блокнот
C13, C14 Электролитический конденсатор 10 мкФ 2 В блокнот
VDS1 Диодный мост 600В 2А 1 В блокнот
NTC1 Терморезистор 10 Ом 1 В блокнот
R1 Резистор

47 кОм

1 В блокнот
R2 Резистор

510 Ом

1 В блокнот
R3 Резистор

200 Ом

1 В блокнот
R4 Резистор

10 кОм

1 В блокнот
Резистор

6.2 Ом

1 В блокнот
Резистор

30Ом 5Вт

2 В блокнот
Сварочный инвертор
ШИМ контроллер

UC3845

1 В блокнот
VT1 MOSFET-транзистор

IRF120

1 В блокнот
VD1 Выпрямительный диод

1N4148

1 В блокнот
VD2, VD3 Диод Шоттки

1N5819

2 В блокнот
VD4 Стабилитрон

1N4739A

1 В блокнот
VD5-VD7 Выпрямительный диод

1N4007

3 Для понижения напряжения В блокнот
VD8 Диодный мост

KBPC3510

2 В блокнот
C1 Конденсатор 22 нФ 1 В блокнот
C2, C4, C8 Конденсатор 0.1 мкФ 3 В блокнот
C3 Конденсатор 4.7 нФ 1 В блокнот
C5 Конденсатор 2.2 нФ 1 В блокнот
C6 Электролитический конденсатор 22 мкФ 1 В блокнот
C7 Электролитический конденсатор 200 мкФ 1 В блокнот
C9-C12 Электролитический конденсатор 3000мкФ 400В 4 В блокнот
R1, R2 Резистор

33 кОм

2 В блокнот
R4 Резистор

510 Ом

1 В блокнот
R5 Резистор

1.3 кОм

1 В блокнот
R7 Резистор

150 Ом

1 В блокнот
R8 Резистор

1Ом 1Ватт

1 В блокнот
R9 Резистор

2 МОм

1 В блокнот
R10 Резистор

1.5 кОм

1 В блокнот
R11 Резистор

25Ом 40Ватт

1 В блокнот
R3 Подстроечный резистор 2.2 кОм 1 В блокнот
Подстроечный резистор 10 кОм 1 В блокнот
K1 Реле 12В 40А 1 В блокнот
K2 Реле РЭС-49 1 В блокнот
Q6-Q11 IGBT-транзистор

IRG4PC50W

6

Инвертор сварочный своими руками собрали сотни мастеров. Как показывает практика, ничего сверхсложного в этом процессе нет. При наличии опыта и желания можно обзавестись необходимыми деталями и потратить некоторое время на работу.

Для изготовления прибора необходимо запастись всеми необходимыми деталями и комплектующими.

Сварочный аппарат трансформаторного типа был настолько громоздким и проблемным при эксплуатации, что пришедшие ему на смену инверторы на тиристорах быстро завоевали всеобщую популярность.

Дальнейшее развитие технологий изготовления полупроводниковых компонентов позволило создать мощные полевые транзисторы. С их появлением инверторы стали еще легче и компактнее. Улучшенные условия регулировки и стабилизации сварочного тока позволяют с легкостью работать даже новичкам.

Выбор конструкции инвертора

В качестве корпуса можно использовать старый компьютерный блок.

Компоновка самодельного сварочного инвертора неоригинальна и похожа на большинство остальных конструкций. Большинство деталей может быть заменено на аналоги. Определять размеры устройства и начинать изготовление корпуса нужно при наличии всех основных элементов.

Можно использовать готовые радиаторы (от старых компьютерных блоков питания или других устройств). При наличии алюминиевой шины толщиной 2-4 мм и шириной более 30 мм их можно изготовить самостоятельно. Можно использовать любой вентилятор от старых устройств.

Все габаритные детали необходимо расположить на плоской поверхности, просмотреть возможности соединения по принципиальной схеме.

Затем определить место установки вентилятора, чтобы горячий воздух от одних деталей не нагревал другие. При затруднительной ситуации можно использовать два вентилятора, работающих на вытяжку. Стоимость кулеров небольшая, вес также незначительный, надежность всего устройства значительно повысится.

Самые габаритные и тяжелые детали – трансформатор и дроссель для сглаживания пульсаций. Их желательно расположить в центре или симметрично по краям, чтобы их вес не перетягивал устройство в одну сторону. Работать с устройством, надетым на плечо и постоянно сползающим в одну сторону во время сварки, крайне неудобно.

При удовлетворительном расположении всех деталей нужно определить размеры днища устройства и вырезать его из имеющегося в наличии материала. Материал должен быть неэлектропроводящим, обычно используются гетинакс, стеклотекстолит. При отсутствии данных материалов можно использовать дерево, обработанное средствами от возгорания и для защиты от влаги. Последний вариант в каком-то плане имеет свои преимущества. Для крепления деталей можно использовать шурупы, а не резьбовые соединения. Это несколько упростит и удешевит процесс изготовления.

Электрическая схема инвертора

Все инверторы имеют сходную блок-схему:

  • входной диодный мост, преобразующий переменное напряжение сети в постоянное;
  • преобразователь постоянного напряжения в переменное высокой частоты;
  • устройство понижения напряжения высокой частоты до рабочего;
  • преобразователь в постоянное напряжение с фильтром для сглаживания пульсаций.

Выбранная для самодельного изготовления схема устроена по классическому способу. Основой схемы является косой мост, который обеспечивает наилучшие характеристики работы при максимальной простоте и такой стоимости. Управление силовой схемой выполняется контроллером TL494. Контрольные функции и регулировку тока сварки осуществляет микроконтроллер PIC16F628. Защита устройства от перегрева также реализована через него. В зависимости от максимального тока и используемых деталей возможно несколько версий прошивки устройства с различным максимально допустимым сварочным током.

Блок питания логических элементов схемы и низковольтного оборудования выполнен на ШИМ-контроллере TNY264.

Принципиальная схема, несмотря на большое количество элементов, изготавливается довольно просто. Вся система управления выполнена на нескольких платах:

  • плата силовых элементов, два варианта;
  • выпрямитель;
  • две платы управления.

На плате силовых элементов установлены выпрямительные диоды с защитными цепями, силовые транзисторы, трансформатор, измерительное сопротивление. Необходимую версию платы нужно выбрать по имеющимся в наличии компонентам для сварочного инвертора.

Для инверторного аппарата необходима плата силового управления.

На плате выпрямителей установлены элементы мостов, сглаживающие конденсаторы, реле плавного пуска, сопротивления, компенсирующие изменения параметров от температуры (термисторы).

На платах силового управления расположены схемы:

  • ШИМ-контроллер с элементами развязки на оптронах;
  • цифровой индикатор с кнопками управления;
  • элементы блока питания;
  • микроконтроллер.

Перед сборкой плат дорожки для установки силовых элементов необходимо усилить медной проволокой сечением 2,5-4 мм. Для лужения дорожек желательно использовать тугоплавкий припой.

Трансформатор и дроссель для инвертора

При изготовлении сердечника для трансформатора сварочного инвертора можно использовать строчные трансформаторы от старых телевизоров. Понадобятся шесть трансформаторов типа ТВС110ПЦ15.У. С трансформаторов нужно снять стягивающую скобу (открутить две гайки М3 и извлечь скобу). Обмотку можно распилить с двух сторон ножовкой по металлу или болгаркой, соблюдая необходимые меры предосторожности. Если после удаления обмотки сердечник не разделяется на две части, нужно зажать его в тиски и легким ударом разделить. Поверхности деталей нужно очистить от эпоксидной смолы. После заготовки магнитопроводов нужно изготовить каркас. Оптимальным материалом для каркаса будет стеклотекстолит толщиной 1-2 мм, но можно использовать гетинакс или картон. Технические характеристики собранного магнитопровода:

Трансформаторы можно позаимствовать у старого телевизора.

  • средняя длина магнитной линии kp=182 мм;
  • размеры окна S 0 =6,2 см 2 ;
  • сечение магнитопровода S м =11,7 см 2 ;
  • коэрцитивная сила H c =12 А/м;
  • остаточная магнитная индукция B г =0,1 Тл;
  • магнитная индукция B s =0,45 Тл (если H=800 А/м), B m =0,33 Тл (если H=100 А/м и t=60° С).

Сечение и количество витков обмоток необходимо рассчитать, исходя из максимально допустимого рабочего тока для устройства.

Обмотки необходимо располагать по всей ширине окна для снижения непроизводительных потерь.

В качестве материала для обмоток можно использовать медную фольгу или литцендрат нужного сечения для устранения скин-эффекта. Изолирующим материалом между слоями и обмотками могут быть вощеная бумага, лакоткань, ФУМ лента.

При необходимости контроля сварочного тока можно изготовить токовый трансформатор. Для его изготовления понадобятся два кольца типа К30х18х7. На них нужно намотать 85 витков медного провода в лаковой изоляции сечением 0,2-0,5 мм. Кольцо надевается на любой из выходных проводов устройства.

Использование инвертора в трехфазной сети

Иногда при перегрузке сети не хватает мощности для нормальной работы инвертора. При возможности подключения однофазный инвертор можно переделать на трехфазный.

При подключении к однофазной сети (вилка включается в розетку) включается пускатель К1. Одна пара его контактов соединяет провода, идущие от вилки к штатному выключателю (вкл./выкл.) инвертора. Другая пара соединит разрезанные на плате дорожки от выключателя к стационарному выпрямителю.

Пускатель К1 должен иметь контакты с максимально допустимым током не менее 25 А.

Для подключения напряжения от трехфазного выпрямителя используется пускатель К2. Максимально допустимый ток его контактов должен быть не менее 10А. Для подключения к трехфазной сети желательно использовать розетку 3p + N + E (три фазных провода, нулевой и заземляющий). Устройство можно встроить в инвертор или изготовить в виде отдельного блока. Изготовление в виде отдельного блока оптимально при работе на одном месте. При частых перемещениях носить два устройства не удобно.

Заключение по теме

Сделать сварочный инвертор своими руками не так сложно. При недостатке опыта всегда можно проконсультироваться у специалистов.

В результате можно получить отличное устройство с дополнительными функциями, отсутствующими у инверторов промышленного изготовления.

Ремонт устройства, изготовленного своими руками, не создаст особых проблем, а использование в работе инструмента будет приносить удовольствие.

Исповедь моей работы со сварочными аппаратами инверторного типа. Я телемастер имеющий 20 лет стажа, собрать любую схему не проблема, и вот появилось огромное желание поработать с инверторами. Схему начал с "бармалея". Собрал, заработало. На испытаниях выдал 40 А на нагрузке 8 спиралей, но без резонанса и трансформатор намотан на 6 ферритах от телевизора результат - пшик. Обмотка ф2 в стеклоткани. Тут начало собственно, занялся изучением силовой электроники. Делал разные схемы резонансные, мостовые, полумостовые с драйверами на трансформаторе, на IR2110, на NSPL3120. И везде изучение + ошибки и... результат один - могила для силовиков, после исправления поминок по погибшим транзисторам опять за работу... А вот результат: два готовых аппарата. Один - сварка 160 А, другой - пускозаряд авто. Принципиальные схемы одинаковые, разница схем в трансформаторе, то есть количестве витков на вторичке.

Даю рекомендации для опытных мастеров, но без понятия в силовой электронике. И не желающих заниматься изучением и расчетами. Кстати, если вы собрали любую схему, все точно и правильно и сразу в сеть - гарантия убой, могила 100%. Поэтому без небольшой теории не обойтись. Начнём все по порядку, за основу взята схема "бармалея" генератор на uc3845 один к одному без переделки + стандартная схема драйверов на ир2110 + ключи irg4pc50ud, лучше 2х2 парами, на ваших испытаниях пары выдержат большие токи. Измененная схема пары транзисторов верна. Диоды 15тб60 рекомендую заменить на 25тв60. Эту схему рекомендую потому что она самая надежная. Пожгете ведро транзисторов, но сама схема будет целой. Диоды 150ebu02 тоже желательно ставить по 2 - это дороже, но расходов будет меньше на эксперименты. Ко всем рекомендациям, которые написаны у "бармалея", их надо обязательно изучить. Во время изучения кое-что у вас сразу прояснится. Добавляю свои, то есть те же самые, но более понятные. Каждый мастер в конце строит свою технологию сваркостроения, а по сути принцип у всех одинаковый. Подробнее о доработке схем смотрите на форуме. Там же задавайте вопросы, если что не ясно.

Если вы не можете сделать простой импульсный блок питания на 15 В 2 А, за сварочный аппарата инверторного типа вам не стоит браться. Лично я на это потратил 3 мес. и 2000 руб. Самое важное - это тщательное изготовление силового трансформатора. Вначале мотал любым проводом, что под рукой, с изоляцией бумажным скотчем на ферритах строчных, Ш20х28, Ш16х20 - везде пшик, пробой, даже лакоткань не спасает. Теперь рассказываю, как сделать его гарантированно рабочим. Обязательно брать эмаль-провод новый, осторожно обращаться, наматывая не царапать, лучше брать ф1,5 или ф2. Наматывать на катушках. Делал катушки из гетинакса 0,5 на деревянных оправках. Каждый слой обмотки обжимается деревянными колодками в тисках, затем пропитывается эпоксидкой.

Когда эпоксидка начнет твердеть, обмотать лакотканью один слой, потом прижимаю пластинами из гетинакса, зажимаю в тисках и оставляю твердеть до конца. Гетинакс тонкий, но эпоксидка дает нужную прочность. Тонкая катушка дает разместить больше обмотки. Катушки делать обязательно. Без катушки - пробой обмотки на железо, ни какая изоляция не спасает - проверено.

Потом пластины гетинакса снимаю внутри катушки, оставляю только там, где выводы выходят - там толщина катушки не страшно. Расчет количества витков беру готовый, спецы этим занимаются, а уже потом, с опытом, сам чувствуешь сколько мотать. Но в основном расчет - сколько входит.

Так на Ш20х28 окно 44х12 катушка окно 42х12 провод ф2 18 витков в два слоя по 9 витков с щелями меж витков. Мотал 24 витка, но такой трансформатор получается не насыщен и выдает мало тока - около 80 А. Рекомендации по "бармалею" - увеличить зазор феррита. Мне кажется лучше уменьшить число витков катушки, наматываются не в упор. Но опять вследствие малого числа витков имеем увеличение частоты резонанса, что хуже сказывается на транзисторах.

На этой схеме питание процессора от крен12, красным - перемычки, цифры 1,2 две микрухи 555 - схема задержки питания, все по бармалею. Схема "бармалея" без изменений, только драйверы на IR2110. Боковинки катушки сделаны не правильно - отрезал, катушка не развалилась, эпоксидка склеила намертво зазор 0,15 1 слой лакоткани. В углу фото катушка с изоляцией лакотканью - пробило после 5 электродов ф2,5. Видно тут около обмоток рядом первичка, соединение последовательно резистор токового трансформатора 4,6 ома, видимо из-за наводок от трансформатора. Плата генератора замазана лаком простым, мебельным. Лак предохраняет от атмосферной влаги и пыли - вентиляторы все гонят внутрь.

Ток зашкаливает 100 А на нагрузке 8 спиралей от 1000 ватт, спирали 2 шт не эквивалент сварки, но для испытаний сгодится. Входные дроссели на кольцах по 8 витков, блок питания готовый, от видеомагнитофона.

Конденсаторов в сумме 2000 мкф. Дроссель 16 витков провод 0,35. Реле какое то из запасов. Сверху трансформатора первичка - 18 витков в 2 слоя в 3 жилы ф1.5, вторичка 3 слоя по 3 жилы ф1,5 по 6 витков параллельно, намотка в одну сторону, зазор 0,1 трансформатор не насыщен, ток 80 А - буду переделывать когда нибудь. Ключи резисторы 2 вт х 7 шт 300 ом, всего 42 ома. Ключи на медных пластинах с диодами под прокладками, генератор драйвер на IR2110 не убиваемый, выдержал сгорание 12-ти транзисторов. Дроссель - 20 витков сечения 2х7 на трех ферритах от строчников. Конденсаторы от русского телевизора, 12 по 100 мкф 350 вольт.

Многооборотный резистор на 10 к - резонанс. Резистор 2к2 - регулятор тока. Холостой ход, плавный спуск со ступенькой - не насыщен трансформатор, надо или уменьшить витки, или увеличить зазор. Резонанс на 40 вольтах, при превышении напряжения синусоида искажается - причина в ненасыщеном трансформаторе. Если схема у вас собрана без ошибок, приступаем к настройке. Сеть должна быть включена через ЛАТР, осциллограф включаем на резонанс. Подключаем на дроссель, как на токовый трансформатор. Через дроссель пропущен провод - плюс силового трансформатора. Осциллограммы и более подробное описание шагов вы можете посмотреть на форуме.

Напряжение поднимаем до 20 вольт - появляется рваная синусоида. Многооборотным резистором синусоиду делаем красивой - это сделать важно, без резонанса - сгорит. Можно поднять напряжение до 40 вольт, если у вас включена нагрузка - на амперметре появляется ток. Подправляем синусоиду. При дальнейшем увеличении напряжения синусоида исказится - это говорит о ненасыщенном силовом трансформаторе, что не страшно, аппарат будет работать.

Еще важный момент - регулятор тока на минимум, поднимаем напряжение примерно на 40, а рост тока должен остановиться, поднимаем напряжение на максимум. А ток все равно 40 А. Если этого нет, надо подобрать ограничивающий резистор 1,6-2,2 ома, как расчет по "бармалею", 100 витков токового трансформатора делим на 50 А - максимальный ток транзистора, и получаем 2 ома резистора. Но у каждого в своей схеме будет отличие. В моей последней, резистор был 4,6 ома.

Регулятором тока добавляем ток до 60 А - это уже сварка, на выходе замыкаем электроды, токовый импульс должен сузиться по горизонтали по осциллографу, если нет, то опять подбираем этот резистор. Этот момент тоже важен. Если этого не сделать, при замыкании электрода ток будет максимальным - транзисторы сгорят сразу. Интересно, что если транзисторы стоят по два в паре, то вылетает только 2 из 4-х, остальные целы, можно продолжить эксперименты. Но для работы лучше поставить всё равно четыре.

Ну все, выходим на улицу и приступим к сварке. Аппарат без корпуса, держак, железка, маска. Включили. Зеленый светодиод показал - все в норме. Регулятор тока на минимум. Пробовали зажечь дугу - не получилось, только искры - это нормально. Выключили, пощупали радиаторы, резисторы, понюхали - все холодное. Добавляем ток, варим, выключили пощупали - ОК. Ставим в корпус и можно обмывать:) Примерно такая моя технология самостоятельного изготовления сварочного инвертора, и она работает! Автор статьи: гнекуцй.

Недавно собирал сварочный инвертор от Бармалея, на максимальный ток 160 ампер, одноплатный вариант. Названа эта схема в честь её автора - Barmaley. Вот электрическая схема и файл с печатной платой.

Схема инвертора для сварки

Работа инвертора: питание от однофазной сети 220 Вольт выпрямляется, сглаживается конденсаторами и подаётся на транзисторные ключи, которые из постоянного напряжения делают высокочастотное переменное, подаваемое на ферритовый трансформатор. Благодаря высокой частоте мы имеем уменьшение габаритов силового транса и как следствие, применяем не железо, а феррит. Дальше понижающий трансформатор, за ним выпрямитель и дроссель.

Осциллограмы управление полевыми транзисторами. Замерял на стабилитроне кс213б без силовых ключей, коэфициент заполнения 43 и частота 33.

В своём варианте силовые ключи IRG4PC50U заменил на более современные IRGP4063DPBF. Стабилитрон кс213б заменил на два 15 вольтовых мощностью 1.3 ватта встречно включенных, так как в прошлом аппарате кс213б немного грелись. После замены проблема сразу исчезла. Остальное все остается как в схеме.

Это осциллограмма коллектор-эмиттер нижнего ключа (по схеме). При подаче питания 310 вольт через лампу 150 ватт. Осциллограф стоит 5 вольт деление и 5 мкс дел. через делитель умноженное на 10.

Силовой трансформатор намотан на сердечнике B66371-G-X187, N87, E70/33/32 EPCOS Моточные данные: сначала пол первички, вторичка, и снова остатки первички. Провод что на первичке, что на вторичке - диаметром 0.6 мм. Первичка - 10 проводов 0.6 скрученных вместе 18 витков (всего). В первый ряд как раз влазит 9 витков. Далее остатки первички в сторону, мотаем 6 витков проводом 0.6 сложенного в 50 штук так же скрученного. И далее снова остатки первички, то есть 9 витков. Не забываем межслойную изоляцию (использовал несколько слоев кассовой бумаги, 5 или 6, больше не усердствуем, иначе обмотка не влезет в окно). Каждый слой пропитывал эпоксидкой.

Затем все собираем, между половинками Е70 феррита нужен зазор 0.1 мм, по крайним кернам ложим прокладку из обычного кассового чека. Все стягиваем, склеиваем.

Я покрасил из баллончика черной матовой краской, затем лаком. Да, чуть не забыл, каждую обмотку, когда скрутили, обматываем малярным скочем - изолируем, так сказать. Не забываем помечать начало и концы обмоток, пригодится для дальнейшей фазировки и сборки. При неправильной фазировке трансформатора аппарат будет варить в пол-силы.

При включении инвертера в сеть, начинается зарядка выходных конденсаторов. Первоначальный ток их зарядки очень велик, сравним с КЗ, и может привести к выгоранию диодного моста. Не говоря уже о том, что для кондёров это тоже чревато выходом из строя. Чтобы избежать такого резкого скачка тока в момент включения, ставят ограничители заряда конденсаторов. В схеме Бармалея это 2 резистора по 30 Ом, мощностью по 5 ватт, итого 15 Ом х 10 Ватт. Резистор ограничивает ток зарядки конденсаторов и после их зарядки можно уже подавать питание напрямую, минуя эти резисторы, что и делает реле.

В сварочном аппарате по схеме Бармалея применена реле WJ115-1A-12VDC-S. Питание катушки реле – 12 вольт DC, коммутируемая нагрузка 20 Ампер, 220 Вольт AC. В самоделках очень распространено применение автомобильных реле на 12 Вольт, 30 Ампер. Однако они не предназначены для коммутации тока до 20 Ампер сетевого напряжения, но, тем не менее, дёшевы, доступны и вполне справляются со своей задачей.

Токоограничивающий резистор лучше ставить обычный проволочный, он выдержит любые перегрузки и более дёшев, чем импортные. Например С5-37 В 10 (20 Ом, 10 Ватт, проволочный). Вместо резисторов можно поставить токоограничивающие конденсаторы, последовательно в цепь переменного напряжения. Например К73-17, 400 Вольт, суммарной ёмкостью 5-10 мкФ. Конденсаторы 3 мкФ, заряжают ёмкость 2000 мкФ, примерно за 5 секунд. Расчёт тока зарядки конденсаторов такой: 1 мкФ ограничивает ток на уровне 70 миллиампер. Получается 3 мкФ на уровне 70х3=210 миллиампер.

Наконец собрал все в едино запустил. Ток по ограничению выставил 165 ампер, теперь оформим сварочный инвертор в хороший корпус. Себестоимость самодельного инвертора примерно 2500 рублей - детали заказывал в интернете.

Провод в перемоточном цехе брал. Еще можно провод снять с телевизоров с размагничивающего контура с кинескопа (это практически готовая вторичка). Дроссель изготовил из E65, медной полосой шириной 5 мм и толщиной 2 мм - 18 витков. Индуктивность подобрал 84 мкГн путем увеличивания зазора между половинками, он составил 4 мм. Можно и не полосой мотать, а так-же 0.6 мм проволокой, но ее труднее будет уложить. Первичку на трансформаторе можно мотать проводом 1.2 мм, набором из 5 штук 18 витков, но можно и 0.4 мм так же посчитать количество проводов под нужное вам сечение, то есть к примеру 15 штук 0.4 мм 18 витков.

После монтажа и настройки схемы на плате, собрал все воедино. Испытания Бармалей прошел успешно: тройку и четверку электрода тянет спокойно. Ток по ограничению поставил 165 Ампер. Собрал и испытал устройство: Арси.

Форум по самодельным инверторам

Обсудить статью СВАРОЧНЫЙ ИНВЕРТОР БАРМАЛЕЙ

radioskot.ru

Самодельный инверторный сварочный аппарат: схема, принцип работы

Сварка становится всё более доступной с появлением сварочных инверторов.

Если раньше хороший аппарат для сварки занимал много места, требовал хорошей квалификации сварщика и был очень капризным, сейчас более-менее мощный инвертор можно легко переносить силами одного сварщика.

Хотя в продаже есть много инверторов, многие хотят сделать самодельный инверторный сварочный аппарат. У самодельного аппарата есть и преимущества, и недостатки.

Общий принцип работы сварочного инвертора. Его достоинства и недостатки

Сварочный инвертор своими руками

Сварочный инвертор – это электронное устройство на основе полупроводниковых приборов.

Он преобразует напряжение бытовой электросети в импульсный ток, который течёт в одном направлении.

Также происходит преобразование по напряжению и току, чтобы приблизить характеристики электрического тока к параметрам, пригодным для сварочных работ.

Инверторы могут быть разными по схеме и реализации. Самодельный инверторный сварочный аппарат своими руками может быть сделан по разным схемам, с применением различных материалов.

Покупной инвертор также имеет разные варианты исполнения и комплектующие. Вопреки убеждениям, не все из них делаются в Китае. Доля тех, которые полностью собраны в Поднебесной империи, составляет примерно половину, другая собирается полностью или частично непосредственно в России или в других странах.

Покупные инверторы могут работать и в аппаратах электродной сварки, и в полуавтоматических аппаратах. Могут даже применяться длинноимпульсные инверторы для сварки неплавящимся электродом в среде защитного газа.

Самодельные инверторы обычно используются только для электродной сварки MMA. При этом используются как покупные, так и самодельные держаки и клеммы.

Чаще всего полярность сварки такая – на положительный контакт ставится электрод, на отрицательный – нулевая клемма. Однако при сварке нержавейки используется обратная полярность:

  • Нужно учесть этот вопрос при проектировании самодельного инвертора и предусмотреть возможность смены контактов и их маркировки.
  • Второй вопрос, который нужно решить – это изменение силы тока. Для сварки электродом диаметром 4 мм нужна максимальная сила тока в районе 100-150 ампер, иначе нельзя получить качественную сварочную ванну.

При работе меньшими диаметрами можно обойтись для тройки током в 90-120 ампер, а для двойки – током 60-100 ампер. Значения по току достаточно условные, зависят от марки электрода, свариваемой стали и даже длины проводов.

На вход инвертора поступает переменный ток от бытовой электросети. Его напряжение – 220 вольт, а максимальный ток, который возможен в сети – около 10 ампер. При большем токе происходит перегрузка электросети и срабатывает автоматический выключатель в большинстве случаев, хотя иногда, когда автомат рассчитан на большее напряжение, ток может достигать и больших значений.

Сварка инвертором

Сварка происходит при напряжении не более 36 вольт.

Это безопасное электрическое напряжение, которое позволяет работать с электродом и металлом без применения дополнительной электрозащиты.

Практическое значение напряжения колеблется от 12 до 30 вольт, максимальное же напряжение возникает, когда сварщик меняет электрод.

Именно в этот момент чаще всего происходит несильное, но ощутимое действие электротока на сварщика, поэтому многие предпочитают вынимать электрод из держака при помощи удара или разжимая клемму держака, а ставить – держа новый электрод пассатижами с изолированными рукоятками.

Регулировка по току в инверторе также должна осуществляться в достаточно широких пределах, если планируется варить разными электродами.

Самодельные конструкции инверторов

Наиболее распространена так называемая «схема инвертора Бармалея» по никнейму человека, впервые опубликовавшего эту схему на одном из интернет-форумов – Barmaley. Выглядит она так:


Схема инвертора Бармалея

На вход схемы подаётся напряжение электрической сети в 220 вольт. Затем напряжение преобразуется при помощи блока диодов и конденсатора. После этого ток поступает через главный трансформатор инвертора на преобразователь, где при помощи пары полевых транзисторов, вспомогательных транзисторов и ещё нескольких электронных приборов преобразуется в постоянный пульсирующий ток.

На выходе этот ток подаётся к электродам через трансформатор, где сглаживается при помощи дросселя, диодов и конденсаторов. Регулировка осуществляется при помощи отдельного регулировочного блока, где присутствуют несколько микросхем и датчик регулировки.

Такой самодельный инверторный сварочный аппарат, схема которого приведена выше, был собран многими умельцами. При сборке часто используются серийные детали и узлы, а также части от вышедших из строя инверторов. Естественно, электронный прибор большой мощности требует охлаждения.

Оно осуществляется при помощи радиаторов и кулера. Часто в качестве кулера используют кулер от блока питания компьютера или от микропроцессора. Для трансформаторов используется достаточно толстый медный провод. Это и не удивительно – ведь токи, с которыми предстоит работать, достаточно большие, и для них необходимо достаточное сечение проводов.

Можно применять и другие схемы инверторов, однако приведённая выше является достаточно надёжной, опробованной и показала себя хорошо при сварке самыми ходовыми электродами – диаметром 3 и 4 мм.

Сравнение самодельного инвертора и трансформатора

Предшественник сварочного инвертора – это сварочный трансформатор.


Сварочный трансформатор

Многие такие устройства применялись при сварке труб. Они имеют как преимущества, так и недостатки по сравнению с инвертором:

  • Сварочный трансформатор сделать гораздо проще, для этого надо минимум знаний по электротехнике и несложный расчёт
  • Трансформатор такой же мощности превосходит инвертор по весу в 3-5 раз.
  • В трансформаторе больше дорогостоящей меди, но по себестоимости изготовления он всё-таки дешевле инвертора.
  • Существуют проблемы с регулировкой по силе тока – регулировка осуществляется за счёт изменения напряжения трансформатора.
  • При проектировании трансформатора можно легко перешагнуть за безопасные значения по напряжению, и электрический прибор станет опасным для сварщика.
  • Точно также можно ошибиться при сборке инвертора, и он также может быть опасным. Но если всё сделано правильно – он более безопасен, чем трансформатор, у которого из-за проблем с регулировкой могут возникнуть переходы за границы допустимого напряжения.
  • Хороший сварочный трансформатор рассчитывают по т. н. «кривой напряжения и тока», чтобы получить приемлемые параметры на выходе
  • Инвертор позволяет регулировать силу тока в более широких пределах. Трансформатор позволяет работать только с ограниченным набором электродов.
  • По габаритам трансформатор также больше инвертора.
  • Трансформатор имеет более низкий КПД и сильнее греется.
  • Разжечь дугу сварки от трансформатора гораздо сложнее, чем даже от самого плохого инвертора – прилипает электрод.

В общем, если нет желания разбираться в электронике, можно рекомендовать сделать сварочный трансформатор вместо инвертора. В любом случае, это самый дешёвый вариант, хотя и не самый удобный.

Покупной и самодельный инверторы – сравнение

Есть ли смысл делать самодельный инверторный сварочный аппарат, когда в продаже имеется достаточно большой выбор покупных? Автор статьи считает, что нет.


Аппарат инверторного типа из магазина

Если, конечно, вы не работаете на радиозаводе, где в избытке имеются детали, которые можно свободно вынести, и у вас есть возможность досконально произвести расчёт схемы и всех её деталей, собрать корпус и вытравить монтажную плату для сборки и пайки деталей.

Сравнение покупного и самодельного инвертора:

  • Покупной инвертор производится серийно, имеет гарантии по электробезопасности и соответствующий сертификат.
  • Если покупной инвертор выйдет из строя по вине производителя во время гарантийного срока, ремонтировать его будут бесплатно.
  • Если самодельный инвертор выйдет из строя, ремонтировать его будет сам владелец за свой счёт.
  • При возникновении проблем с работой инвертора, получением травмы от удара током ответственность за всё будет нести продавец. Если это произойдёт при использовании самодельного – виноват сам мастер.
  • Покупной инвертор для сварки электродом тройкой стоит от 3 до 5 тысяч рублей, для сварки электродом 4 мм – от 4 до 6.
  • Самодельный инвертор, если делать его из покупных деталей, обойдётся от 1 до 2 тысяч рублей, но без кабелей.
  • Качественный держак, клемма земли и провод питания с хорошей вилкой обойдутся ещё в 1.5-2 тысячи рублей.
  • На изготовление самодельного инвертора придётся потратить около 3 рабочих дней, а если нужно искать детали в магазинах или есть трудности с изготовлением печатной платы – то и больше.
  • В продаже к инвертору обычно идёт удобный кейс для переноски. Покупка пластикового кейса для самодельного инвертора, чтобы туда влез сам аппарат и все кабели, обойдётся ещё около 300-500 рублей.
  • Никто не даёт гарантии, что самодельный инвертор будет работать вообще. А тем более – давать качественный шов.
  • Большинство покупных инверторов имеют также систему «умный розжиг», которая исключает прилипание электрода к металлу при зажигании дуги и делает работу сварщика доступной даже новичкам.

Таким образом, цена покупного инвертора практически сводит на нет всю выгоду от изготовления самодельного. Цена инвертора для сварки тройкой в 4 тысячи рублей вместе с хорошим держаком, землёй и кабелем будет всего на 1-1.5 тысячи рулей больше, чем себестоимость изготовления инвертора своими силами.

При этом магазин несёт гарантию за свой товар, предоставляет качественное обслуживание и несёт ответственность за его безопасность.

Вероятно, это окончательно поставит точку в вопросе выбора инвертора и самостоятельного его изготовления. Конечно, собрать такую штуку самому очень интересно. Но даже для единичных работ, к примеру, приварить петли в гараже и скобы для замка, стоит приобрести инвертор в магазине.

Самодельный сварочный инвертор представлен на видео:

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter, чтобы сообщить нам.

foxremont.com

Инвертор для сварки металлов Бармалей

Сварочный инвертор – полезная вещь, причем как в хозяйстве, так и в производстве. Особенно приятно, когда сварочный инвертор выполнен своими руками, а не приобретен в магазине. Сварочный инвертор Бармалей, сделанный собственными руками, располагает двумя важными преимуществами: экономия средств и гарантия качества. Можно собрать сварочный аппарат Бармалей, который будет насчитан на 160 А, при этом инвертор этот будет располагать одноплатным вариантом.

Технические характеристики:

  • Питающая сеть – 220В;
  • Частота сети – 50 Гц;
  • Предназначение – ручная дуговая сварка металлов и сплавов;
  • Максимальный ток -160 А;
  • Тип оборудования – инверторный.

Работа оборудования, и его сборка

Сварочный инвертор питается за счет обыкновенной сети переменного тока напряжением 220В, после чего напряжение выпрямляется, сглаживается посредством конденсаторов. Далее производится подача на транзисторные ключи, которым посильно, в свою очередь, из постоянного тока сделать высококачественное переменное значение, которое подается на ферритовые трансформаторы.

С помощью частоты у нас появляется возможность уменьшить габариты силовой части установки, вследствие чего применяется не железо, а, как правило, феррит. Далее следует трансформатор, выпрямитель для последующего преобразования сварочного тока, а также дроссель. Управление полевыми транзисторами производится посредством осциллограммы. Замеры на стабилитроне показывают, что коэффициент заполнения и частота равны 43 и 33 соответственно. В собственноручном варианте исполнения оборудования силовые ключи IRG4PC50U могут быть заменены наиболее усовершенствованные IRGP4063DPBF.

Таким образом, стабилитрон СК2136 заменяется двумя рассчитанными на 15В и мощность 1,3 Вт встречно включенных стабилитронов, поскольку в былом варианте аппарата КС2336 стабилитроны греются. После того как была произведена замена греющихся элементов оборудования проблемы подобного рода полностью не исчезли. Всё остальное остается прежним, как указано на схематическом рисунке.

Осциллограмма коллектор-эмиттер нижнего ключа также заслуживает внимания собирающего сварочный инвертор самостоятельно. Во время подачи напряжения 310В посредством лампы, рассчитанной на 150 Вт, происходит нужная нам картинка. Силовой трансформатор наматывается на сердечнике B66371-G-X187, №87, E70/33/32 EPCOS. Данные обмотки: сперва половина первичной обмотки, после чего наматывается вторичная обмотка, остатки первичной обмотки.

Провод, находящийся на первичной обмотке, а также на вторичной имеет диаметр 0,6 миллиметра. Первичная обмотка располагает 10 проводами толщиной 0,6 миллиметра, которые находятся в скрученном положении в 18 витков. Первый ряд аккуратно вмещает 9 витков обмотки. После этого остатки причиной обмотки идут в сторону, а начинается наматывание 6 витков посредством применения провода толщиной 0,6 миллиметра в полста штук также в скрученном положении.

Затем снова остаточная масса первичной обмотки в количестве 9 витков должна найти место. Не следует забывать об изолирующем слое, который будет располагаться между слоев. Для межслойной обмотки можно вполне удачно применить кассовую бумагу, в противном случае обмотка не будет влезать в окно. Каждый из слоев следует пропитать тщательно эпоксидной смолой.

Производим сборку. Между половинками Е70 феррита понадобится зазор в 0,1 миллиметра. Таким образом, кладем прокладку из простого кассового чека по крайним кернам, после чего всё складывается и склеивается. Можно покрасить матовой краской, после чего нанести для закрепления слой лака. Также стоит знать, что каждая обмотка должна вдобавок ко всему обматываться малярным скотчем для пущей изоляции.

Не следует забывать делать метки начала и конца обмоток, поскольку это пригодиться для последующей разделения по фазам, а также сборки оборудования. Неправильная фазировка гарантирует то, что сварочный инвертор вообще не буде работать, либо будет функционировать в полсилы. При включении устройства в сеть, происходит зарядка выходных конденсаторов. Первичный ток довольно велик, и может привести при КЗ к возгоранию диодного моста. В связи с этим рекомендуется поставить ограничители заряда конденсаторов.

Сварочный инвертор по указанной выше схеме имеет реле WJ115-1A-12VDC-S. Питание катушки составляет 12В DC, нагрузка коммутируемая 20 А, входное напряжение составляет 220В АС. Токоограничивающий резистор ставится обычный проволочный к примеру – С5-37 В 10. Альтернативой резисторам может служить токоограничивающие конденсаторы, вставленные в цепь последовательно.