Низкочастотный поршневой излучатель. Низкочастотные излучатели Как сделать низкочастотный излучатель

Большой проблемой для любой акустической системы являются низкие частоты. Чтобы поднять их уровень чаще всего применяется фазоинвертор. Он не сложен в изготовлении, но требуется его правильный расчет, который не так прост. Намного проще подняты басы любой АС, установив в них своими руками пассивный излучатель.

Что такое пассивный излучатель

Пассивный излучатель (или пассивный динамик ) — это излучатель, лишенный магнитной системы с катушкой и не способный преобразовывать электрический сигнал в звуковые колебания. Он не может работать самостоятельно и должен возбуждаться активным излучателем, установленным в тот же корпус.

Наиболее эффективен пассивный излучатель на низких частотах. На средних и высоких частотах звукового давления, создаваемого активным излучателем, просто недостаточно. Говоря проще, при помощи пассивного динамика можно своими руками значительно улучшить басы вашей акустической системы.

АЧХ колонки с пассивным излучателем

Установка пассивного излучателя приводит к увеличению площади излучающей поверхности. Два диффузора колеблются вместе, повышая уровень в НЧ диапазоне и улучшая . Для примера рассмотрим обобщенную АЧХ акустической системы до и после вставки пассивного излучателя.


На сравнительном графике видно, что при наличии пассивного излучателя, амплитудно-частотная характеристика акустической системы значительно повышается в диапазоне от 20 до 500Гц. А это и есть низкочастотная область.

Каждый пассивный излучатель имеет свою резонансную частоту, т.е. частоту, на которой его колебания максимальны. Основную трудность для АС обычно представляют самые низкие частоты, поэтому резонансную частоту всегда стараются понизить. Для этого диффузор пассивного динамика делают большей массы.

Колонка с пассивным излучателем

Диаметр диффузора пассивного динамика должен быть больше или равен диаметру активного излучателя . Собственный резонанс пассивного излучателя должен лежать ниже резонанса основного динамика. В идеале, для настольной акустики он должен лежать ниже 20Гц. Такую же низкую резонансную частоту должен иметь и активный громкоговоритель.

Применяется пассивный излучатель только в корпусе типа закрытый ящик. Т.к. возбуждается он только колебаниями воздуха внутри корпуса от активной головки, следовательно любая негерметичность корпуса колонки с пассивным излучателем сильно снижает эффективность отдачи по НЧ.

Пассивный излучатель своими руками

Можно легко сделать пассивный излучатель своими руками, удалив у низкочастотного динамика магнитную систему и подвижную катушку. Лучше использовать басовый динамик диаметром не меньше предполагаемого активного излучателя. Так же не лишим будет немного утяжелить диффузор.

Не обязательно препарировать нормальный динамик, чтобы сделать из него пассивный динамик своими руками. Лучше использовать его по назначению, а в дополнение к нему дешево купить пассивный излучатель на AliExpress.


Показанные выше пассивные излучатели отлично подходят для создания самодельных портативных колонок. Они обладают диаметром 2 дюйма и стоят всего 143 рубля за пару . Покупать рекомендую в этом магазине .

Еще более интересный вариант:


Эти пассивные излучатели уже меньше похожи на обычные динамики, т.к. лишены металлической корзины и имеют минимальную толщину. Они обладают диаметром 3 дюйма (79мм), за счет чего могу обеспечить лучшие басы. Обойдутся они несколько дороже — 515 рублей за пару . Ссылка на магазин .

Больше диаметр — больше басов:


Это уже 4-х дюймовый пассивный излучатель басов. Его цена так же не столь велика составляет 260 рублей . .

Заключение

Довольно популярная сегодня область применения пассивных излучателей — это портативные колонки. При их размерах не так то просто получить действительно хороший бас. Акустический пассивный излучатель может значительно улучшить ситуацию.

Пассивные излучатели уже давно используются и в полноценных колонках, заменяя собой фазоинверторы. Например,пассивный излучатель отлично подходит для сабвуфера, особенно автомобильного.

Еще одна интересная статья:

Материал подготовлен исключительно для сайта

Низкочастотными (НЧ) излучателями электромагнитных колебаний в основном являются звукоусилительные устройства различного функционального назначения и конструктивного исполнения. В ближней зоне таких устройств наиболее мощным выступает магнитное поле опасного сигнала. Такое поле усилительных систем достаточно легко обнаруживается и принимается посредством магнитной антенны и селективного усилителя звуковых частот (рис. 4.3).

Рис. 4.3. Прием НЧ сигналов

Высокочастотные излучатели

Источниками опасного сигнала являются ВЧ генераторы радиоприемников, телевизоров, измерительных генераторов, мониторы ЭВМ.

Рис. 4.4.

Модуляторы ВЧ колебаний как элементы, обладающие нелинейными характеристиками (диоды, транзисторы, микросхемы), образуют нежелательные составляющие ВЧ характера.

Источниками излучения ВЧ колебаний в различной аппаратуре являются встроенные в них генераторы, частота которых по тем или иным причинам может быть промодулирована речевым сигналом.

В радиоприемниках, телевизорах, магнитофонах, трехпрограммных громкоговорителях и в ряде электроизмерительных приборов всегда имеются встроенные генераторы (гетеродины). К ним примыкают различные усилительные системы -усилители НЧ, системы звукоусиления, способные по тем или иным причинам войти в режим самовозбуждения (т.е. по существу стать неконтролируемым гетеродином).

Основным элементом гетеродина является колебательный контур с конденсатором переменной емкости. Под воздействием акустического давления будет меняться расстояние между пластинами переменного воздушного конденсатора гетеродина. Изменение расстояния приведет к изменению емкости, а последнее -к изменению значения частоты гетеродина ( = 1/ ) по закону акустического давления, т.е. к частотной модуляции гетеродина акустическим сигналом.

Кроме конденсаторов, акустическому воздействию подвержены катушки индуктивности с подстроечными сердечниками, монтажные провода значительной длины.

Практика показала, что акустическая реакция гетеродина возможна на расстоянии до нескольких метров, особенно в помещениях с хорошей акустикой. В зависимости от типа приемника, прием такого сигнала возможен на значительном расстоянии, иногда достигающем порядка 1–2 км. Источником излучения ВЧ колебаний в аппаратуре звукозаписи является генератор стирания-подмагничивания, частота которого может быть промодулирована речевым сигналом за счет нелинейных элементов в усилителе записи, головки записи и др. из-за наличия общих цепей электропитания взаимного проникновения в тракты усиления.

В цепях технических средств, находящихся в зоне воздействия мощных ВЧ излучений, напряжение наведенных сигналов может составлять от нескольких до десятков вольт. Если в указанных цепях имеются элементы, параметры которых (индуктивность, емкость или сопротивление) изменяются под действием НЧ сигналов, то в окружающем пространстве будет создаваться вторичное поле ВЧ излучения, модулированное НЧ сигналом (рис. 4.5).

Рис. 4.5. Классификация излучателей ВЧ сигналов

Роль нелинейного элемента могутиграть:

    телефоны, различные датчики (ВЧ навязывание по проводам);

    приемники, магнитофоны (ВЧ навязывание по эфиру).

Как правило, причиной излучения кабелей является плохое состояние:

    соединителей;

    направленных ответвлений и т.п.

Теоретически, если нет дефектов в экранирующей оплетке (экране) кабеля, его экран ослабляет излучение более чем в 100 дБ. Этого более чем достаточно для предотвращения любого излучения кабеля, которое можно зарегистрировать. Для того чтобы сигнал был зарегистрирован приемником, его максимальный уровень в кабеле не превышает 100 мкВ, а минимальный на поверхности кабеля - не более 1 мкВ.

Тепловой шум на входе приемника ограничивает прием сигнала. Это подтверждается расчетными значениями уровня шума в широкополосном кабеле (табл. 4.1).

Таблица 4.1. Уровни шума в широкополосном кабеле

Из табл. 4.1 видно, что среднеквадратическое значение теплового шума на поверхности кабеля выше 1 мкВ для кабеля с высокой скоростью передачи данных (отношение сигнал/шум больше 1). При таких значениях вполне возможен перехват данных по излучению кабеля. С увеличением расстояния между кабелем и приемником эта возможность уменьшается, т.к. затухание излучения равно

А = 20 log (4 d / ) ,

где d - расстояние до кабеля,- длина волны излучения кабеля.

Таким образом, при исправном кабеле перехватить информацию по излучению очень трудно. Однако на практике кабели не всегда экранированы. Это приводит к тому, что неисправные или покрытые коррозией соединители могут быть причиной значительных излучений. Сигнал в 1 мкВ может быть обнаружен на расстоянии 3 м от кабеля, а в 1 мВ - на расстоянии 300 м.

Низкочастотный поршневой излучатель предназначен для работы в газовых средах и может быть использован как для сигнализации, так и для акустической интенсификации тепломассообменных процессов, протекающих в газовой среде или на границе с жидкостью и твердым телом, например при сушке или для коагуляции аэрозолей. Сущность изобретения заключается в том, что поршень не касается стенок трубы и направляется в ней с помощью подшипников качения, так что трение скольжения заменено на трение качения. А для того чтобы через зазор между стенками трубы и поршнем не происходило перетекание газа, выравнивающее давление по обе стороны поршня, и не происходило акустическое короткое замыкание, препятствующее излучению, величина зазора не должна превышать длину вязкой волны на частоте колебаний поршня. В этом случае вязкость газа в зазоре и его инерция обеспечивают необходимую герметизацию зазора. 3 з. п. ф-лы, 1 ил.

Изобретение относится к акустическим излучателям, предназначенным для работы в газовых средах, например при подаче звуковых сигналов, а также для интенсификации тепломассообменных процессов, протекающих в газах или на границе газ - жидкость и газ - твердое тело, и может быть использовано в электротифонах, в пищевой промышленности и фармацевтике для интенсификации процессов сушки, в химической и металлургической промышленности для очистки выбросов запыленных газов и т.д. Известны излучатели, в которых акустические колебания создаются при возвратно-поступательном перемещении поршня, приводимого в движение приводом, например кривошипно-шатунным механизмом: электротифон, по авт.св. 357587, кл. G 10 K, 7/04, инфразвуковой генератор по авт.св. 1703099, кл. B 06 B, 1/10, низкочастотный акустический генератор с системой обратной связи по международной заявке 88/07894, кл. B 06 B, 1/20. Известны также широко используемые на судах электротифоны, как отечественные ТЭ-1 и ТЭ-2, так и зарубежные: шведские МА 18/130, МА 18/90, МА 18/75 (Каталог фирмы Kockums, 1985) и японские МН 700, МН 550 (Судостроение за рубежом 1985, N 5 /221/, с. 107-111). Наиболее близким техническим решением к заявленному является генератор звука низкой частоты по патенту США 5109948, кл. G 10 K, 5/00, UScl.181-142. Он же заявлен в качестве международной заявки WO 090/00095, кл. B 06 B, 1/20. Этот генератор содержит привод в виде электромотора и шток с поршнем, перемещающимся в трубе. Все технические решения имеют общий недостаток - очень низкую эффективность, так как большая часть энергии привода при перемещении поршня тратится на преодоление сил трения, возникающих при движении уплотнительных колец на поршне по стенкам трубы в одних подобных конструкциях (судовые тифоны) или подобных же сил в отсутствии уплотнительных колец, но при выполнении поршня плотно прилегающим своей образующей к стенкам трубы - в других технических решениях. Задачей изобретения является увеличение КПД излучателя. Поставленная задача достигается тем, что в низкочастотном поршневом излучателе, содержащем привод, а также поршень, расположенный в трубе, последний установлен с зазором h величиной h = (/f) 0,5 где - длина вязкой волны на частоте излучения; f - частота излучения, равная частоте колебаний поршня; - коэффициент кинематической вязкости газа (воздуха), находящегося в зазоре между поршнем и трубой. При этом направлении движения поршня в трубе обеспечивается подшипниками качения, располагаемыми либо в теле поршня, либо в стенках трубы. Следует отметить, что т.к. для выбранной газовой среды является величиной постоянной, а f равна заданной частоте колебаний, то и длина вязкой волны тоже величина постоянная. На низких звуковых частотах она составляет доли мм. В изобретении в качестве подшипников качения могут быть применены подшипники цилиндрического типа, при этом оси цилиндрических подшипников располагаются в плоскости, перпендикулярной оси симметрии трубы. На чертеже 1 изображена конструкция изобретения, где 1 - поршень; 2 - труба; 3 - зазор между поршнем и трубой; 4 - подшипники качения; 5 - шатунно-кривошипный механизм привода; 6 - электродвигатель привода. Поршень 1 расположен в трубе 2 с зазором 3 на подшипниках качения 4, поршень связан с помощью шатунно-кривошипного механизма 5 с электродвигателем 6. При этом на фиг. 1 приведен пример реализации привода в виде электродвигателя и шатунно-кривошипного механизма. Устройство работает следующим образом. Электродвигатель 6 с помощью шатунно-кривошипного механизма 5 обеспечивает возвратно-поступательное движение поршня 1 с заданной амплитудой и частотой. Направление движения поршня 1 в трубе 2 и поддержание постоянным зазора 3 обеспечивается подшипниками качения 4, расположенными либо на внутренней поверхности трубы 2, либо на внешней поверхности поршня 1. Движение поршня 1 создает в трубе 2 акустические колебания заданной частоты, излучаемые в пространство. В результате использования в излучателе зазора 3, не превышающего длину вязкой волны на частоте излучения инерции газа, находящегося в зазоре 3, и его вязкость и инерция оказываются достаточными, чтобы обеспечить требуемую герметизацию зазора при движении поршня 1 и устранить перетекание газа через зазор 3, а следовательно, и возможность возникновения акустического короткого замыкания, сводящегося к выравниванию давлений по обе стороны торцев поршня 1. Применение в предлагаемой конструкции подшипников качения способствует резкому снижению потребляемой мощности, и хотя трение и здесь имеет место, но оно существенно снижено, т.к. коэффициенты кинематической вязкости газов, определяющих силы трения в пристенном слое, и смазочных масел, используемых в излучателях с уплотнительными кольцами, отличаются на два порядка. Проверка работы предлагаемого излучателя проведена с использованием цилиндрического поршня диаметром 95 мм, колеблющегося с частотой 25 Гц. Измерения звукового давления проводились в камере малого объема. При работе поршня с уплотнительными кольцами для работы излучателя применялся электродвигатель мощностью 1100 Вт (расчетная потребляемая мощность 1 кВт). Полученное в камере давление равнялось 120 дБ. Тот же излучатель с поршнем без колец и с линейными подшипниками качения при зазоре h = 0,3 мм развивал звуковое давление 119 дБ, но работал он с двигателем 120 Вт (расчетное значение потребляемой мощности в этом случае 50 Вт). Таким образом, при практически неизменном уровне звукового давления (разница 1 дБ) затраты электроэнергии могут быть снижены на порядок.

Формула изобретения

1. Низкочастотный поршневой излучатель, содержащий привод и поршень, расположенный в трубе, отличающийся тем, что поршень установлен в трубе с зазором, причем величина зазора h выбирается из соотношения где - длина вязкой волны на частоте излучения; f - частота излучения, равная частоте колебаний поршня;
- коэффициент кинематической вязкости газа, находящегося в зазоре между трубой и поршнем,
при этом направление движения поршня в трубе обеспечивается подшипниками качения. 2. Излучатель по п. 1, отличающийся тем, что подшипники качения установлены на внутренней поверхности трубы. 3. Излучатель по п. 1, отличающийся тем, что подшипники качения установлены на внешней поверхности поршня. 4. Излучатель по п.1, отличающийся тем, что подшипники качения выполнены цилиндрическими, а их оси расположены в плоскости, перпендикулярной оси симметрии трубы.

Похожие патенты:

Изобретение относится к физической акустике и может использоваться для определения частотной зависимости коэффициента звукопрохождения упругих пластин - звукоизолирующих перегородок и кожухов прямоугольной формы при воздействии на них стационарных полигармонических или гармонических звуковых полей

ИДЕАЛЬНОЕ ОРУЖИЕ: ЗВУКОВАЯ ВОЛНА НИЗКОЙ ЧАСТОТЫ.
04.10.2013
Разные есть способы убийства неугодного человека. Есть зверские способы бандтитско-ментовские, а есть элитные, когда бандитский способ не подходит по соображениям политических скандалов. Для таких целей применяют психотронное оружие, которое вошло в жизнь людей давным-давно. Только держалось в секретах и тайнах. С приходом в нашу жизнь Интернета, психотронное оружие раскрыло свои тайны. Не все, конечно. Все приходит постепенно. Ныне это оружие применяется против «неугодных» политиков и других неудобных фигур.

В начале 20 века, в 1929 году правительство Великобритании под руководством ученого физика Роберта Вуда построило в театре под видом органной трубы низкочастотную пушку, издающую неслышимую «ноту». Оружие испытали во время репетиции. Люди соседних домов выскакивали в панике на улицы. Теперь звуки можно передавать по телефону. Вам звонят… Алло! А в ответ тишина. Бросайте телефон, вам включили инфразвук, низкочастотную волну. Маленькая телефонная трубка в кармане используется, как супер оружие.

Человеческое ухо различает от 16 до 20 000 герц. Ниже этого порога - инфразвук. Выше - ультразвук. Ухо не слышит ниже и выше. Но человек находится в диапазоне воздействия этих звуков. На частоте от 7 до 13 герц - природная волна страха. Излучаемая тайфунами, землетрясениями, извержениями вулканов. Звуки, побуждающие все живое покидать очаги стихийных бедствий.

Каждый орган человека работает на определенной волне и частоте. Если давать определенный импульс, направленный на эту волну, то происходит резонанс. Внутренние органы входят в резонанс. Обвал этого органа - спонтанный отек легких, острая сердечная недостаточность, острая почечная недостаточность. Такой маленький приборчик может действовать на расстояние 10-15 м. Выступает на сцене человек, а в зале человек с чемоданчиком. Публичная смерть. Да. Было слабое сердце. Были слабые почки. Есть на что свалить. Вещь эта страшная.

Самая опасная частота с 7 до 9 герц. Она совпадает с колебаниями мозга и нарушает мыслительный процесс. Человеку, на которого воздействуют такими звуковыми волнами, начинает казаться, что его голова разрывается на куски. Впадает в состояние паники, ужаса, отчаяния.Такое оружие убивает в течение тысячных доли секунды. Наступает разрушение работы мозга. Идет низко звуковой сигнал, который в резонансе с клетками мозга. И клетки разрушаются. Оружие действует невидимо и поистине смертоносно.

Обычно психотронное оружие такого типа настроено на 4 разных частоты. На мозг, на сердце, на печень, на селезенку. Основные органы, - при воздействии на которые может наступить мгновенная смерть. Это те органы, с чем связано обильное кровоизлияние.
Если ударить по этим органам. Человек 100% труп.

Это не звук, как таковой. Это инфразвук. Опасно воздействует на организм, человеческому уху не слышен. Частота инфразвука от 2 до 20 герц. Внутренние органы человека имеют колебания в этом же диапазоне. Когда частоты совпадают, то происходит резонанс. Это может повлечь за собой болезнь сердца, непереносимую головную боль и галлюцинации. Частота колебаний атомов клетки совпадает - орган рушится. Когда солдаты пройдут строевым шагом по мосту, мост рухнет.

В мире давно применяют акустические пушки. Американские военные экспериментируют во время захватнических войн на Ближнем Востоке. Под грифом секретно работают пушки в спектре низкочастотных звуковых волн. На организм может воздействовать негативно ультразвук. Вызывать определенные изменения в нервной системе человека, сердечно-сосудистой, эндокринной, вегетативной системы. Это убийство.

Звуковое оружие - удобное оружие. Невозможно проследить откуда и кем был нанесен удар.
Бермудский треугольник - не что иное, как полигон для испытания этого вида оружия. Все легенды о летучем голландце - миф, прикрытие испытаний. Команды бросались за борт от невыносимых для организма, несовместимых с жизнью, звуков. Никакой мистики, которую много лет наворачивают на уши простодушным читателям. Корабли носились по морю, управляемые только волнами. Мощные потоки инфразвука вызывают внезапное помешательство людей, вызывающие состояние паники, страха, неодолимого ужаса у человека, зверство, агрессию во время демонстраций, на футбольных стадионах. Не люди сходят с ума, - на них влияют акустическими пушками. Разработка оружия звукового воздействия продолжается.

Генераторы низкой частоты (ГНЧ) используют для получения незатухающих периодических колебаний электрического тока в диапазоне частот от долей Гц до десятков кГц. Такие генераторы, как правило, представляют собой усилители, охваченные положительной обратной связью (рис. 11.7,11.8) через фазосдви-гающие цепочки. Для осуществления этой связи и для возбуждения генератора необходимы следующие условия: сигнал с выхода усилителя должен поступать на вход со сдвигом по фазе 360 градусов (или кратном ему, т.е. О, 720, 1080 и т.д. градусов), а сам усилитель должен иметь некоторый запас коэффициента усиления, KycMIN. Поскольку условие оптимального сдвига фаз для возникновения генерации может выполняться только на одной частоте, именно на этой частоте и возбуждается усилитель с положительной обратной связью.

Для сдвига сигнала по фазе используют RC- и LC-цепи, кроме того, сам усилитель вносит в сигнал фазовый сдвиг. Для получения положительной обратной связи в генераторах (рис. 11.1, 11.7, 11.9) использован двойной Т-образный RC-мост; в генераторах (рис. 11.2, 11.8, 11.10) — мост Вина; в генераторах (рис. 11.3 — 11.6, 11.11 — 11.15) — фазосдвигающие RC-це-почки. В генераторах с RC-цепочками число звеньев может быть достаточно большим. На практике же для упрощения схемы число не превышает двух, трех.

Расчетные формулы и соотношения для определения основных характеристик RC-генераторов сигналов синусоидальной формы приведены в таблице 11.1. Для простоты расчета и упрощения подбора деталей использованы элементы с одинаковыми номиналами. Для вычисления частоты генерации (в Гц) в формулы подставляют значения сопротивлений, выраженные в Омах, емкостей — в Фарадах. Для примера, определим частоту генерации RC-генератора с использованием трехзвенной RC-це-пи положительной обратной связи (рис. 11.5). При R=8,2 кОм; С=5100 пФ (5,1х1СГ9 Ф) рабочая частота генератора будет равна 9326 Гц.

Таблица 11.1

Для того чтобы соотношение резистивно-емкостных элементов генераторов соответствовало расчетным значениям, крайне желательно, чтобы входные и выходные цепи усилителя, охваченного петлей положительной обратной связи, не шунтировали эти элементы, не влияли на их величину. В этой связи для построения генераторных схем целесообразно использовать каскады усиления, имеющие высокое входное и низкое выходное сопротивления.

На рис. 11.7, 11.9 приведены «теоретическая» и несложная практическая схемы генераторов с использованием двойного Т-моста в цепи положительной обратной связи.

Генераторы с мостом Вина показаны на рис. 11.8, 11.10 [Р 1/88-34]. В качестве УНЧ использован двухкаскадный усилитель. Амплитуду выходного сигнала можно регулировать потенциометром R6. Если требуется создать генератор с мостом Вина, перестраиваемый по частоте, последовательно с резисторами R1, R2 (рис. 11.2, 11.8) включают сдвоенный потенциометр. Частотой такого генератора можно также управлять, заменив конденсаторы С1 и С2 (рис. 11.2, 11.8) на сдвоенный конденсатор переменной емкости. Поскольку максимальная емкость такого конденсатора редко превышает 500 пФ, удается перестраивать частоту генерации только в области достаточно высоких частот (десятки, сотни кГц). Стабильность частоты генерации в этом диапазоне невысока.

На практике для изменения частоты генерации подобных устройств часто используют переключаемые наборы конденсаторов или резисторов, а во входных цепях применяют полевые транзисторы. Во всех приводимых схемах отсутствуют элементы стабилизации выходного напряжения (для упрощения), хотя для генераторов, работающих на одной частоте или в узком диапазоне ее перестройки, их использование не обязательно.

Схемы генераторов синусоидальных сигналов с использованием трехзвенных фазосдвигающих RC-цепочек (рис. 11.3)

показаны на рис. 11.11, 11.12. Генератор (рис. 11.11) работает на частоте 400 Гц [Р 4/80-43]. Каждый из элементов трехзвен-ной фазосдвигающей RC-цепочки вносит фазовый сдвиг на 60 градусов, при четырехзвенной — 45 градусов. Однокаскадный усилитель (рис. 11.12), выполненный по схеме с общим эмиттером, вносит необходимый для возникновения генерации фазовый сдвиг на 180 градусов. Заметим, что генератор по схеме на рис. 11.12 работоспособен при использовании транзистора с высоким коэффициентом передачи по току (обычно свыше 45...60). При значительном снижении напряжения питания и неоптимальном выборе элементов для задания режима транзистора по постоянному току генерация сорвется.

Звуковые генераторы (рис. 11.13 — 11.15) близки по построению к генераторам с фазосдвигающими RC-цепочками [Рл 10/96-27]. Однако за счет использования индуктивности (телефонный капсюль ТК-67 или ТМ-2В) вместо одного из ре-зистивных элементов фазосдвигающей цепочки, они работают с меньшим числом элементов и в большем диапазоне изменения напряжения питания.

Так, звуковой генератор (рис. 11.13) работоспособен при изменении напряжения питания в пределах 1...15 В (потребляемый ток 2...60 мА). При этом частота генерации изменяется от 1 кГц (ипит=1,5 В) до 1,3 кГц при 15 В.

Звуковой индикатор с внешним управлением (рис. 11.14) также работает при 1)пит=1...15 В; включение/выключение генератора производится подачей на его вход логических уровней единицы/нуля, которые также должны быть в пределах 1...15 В.

Звуковой генератор может быть выполнен и по другой схеме (рис. 11.15). Частота его генерации меняется от 740 Гц (ток потребления 1,2 мА, напряжение питания 1,5 В) до 3,3 кГц (6,2 мА и 15 В). Более стабильна частота генерации при изменении напряжения питания в пределах 3...11 В — она составляет 1,7 кГц± 1%. Фактически этот генератор выполнен уже не на RC-, а на LC-эле-ментах, причем, в качестве индуктивности используется обмотка телефонного капсюля.

Низкочастотный генератор синусоидальных колебаний (рис. 11.16) собран по характерной для LC-генераторов схеме «емкостной трехточки». Отличие заключается в том, что в качестве индуктивности использована катушка телефонного капсюля, а резонансная частота находится в диапазоне звуковых колебаний за счет подбора емкостных элементов схемы.

Другой низкочастотный LC-генератор, выполненный по каскодной схеме, показан на рис. 11.17 [Р 1/88-51]. В качестве индуктивности можно воспользоваться универсальной или стирающей головками от магнитофонов, обмотками дросселей или трансформаторов.

RC-генератор (рис. 11.18) реализован на полевых транзисторах [Рл 10/96-27]. Подобная схема используется обычно при построении высокостабильных LC-генераторов. Генерация возникает уже при напряжении питания, превышающем 1 В. При изменении напряжения с 2 до 10 6 частота генерации понижается с 1,1 кГц до 660 Гц, а потребляемый ток увеличивается, соответственно, с 4 до 11 мА. Импульсы частотой от единиц Гц до 70 кГц и выше могут быть получены изменением емкости конденсатора С1 (от 150 пФ до 10 мкФ) и сопротивления резистора R2.

Представленные выше звуковые генераторы могут быть использованы в качестве экономичных индикаторов состояния (включено/выключено) узлов и блоков радиоэлектронной аппаратуры, в частности, светоизлучающих диодов, для замены или дублирования световой индикации, для аварийной и тревожной индикации и т.д.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год