Схема выносной делитель 1 10 для осциллографа. Осциллограф из монитора компьютера в домашних условиях. Варианты решения проблемы

Не секрет, что у начинающих радиолюбителей не всегда есть под рукой дорогое измерительное оборудование. К примеру осциллограф, который даже на китайском рынке, самая дешевая модель стоит порядка нескольких тысяч.
Бывает осциллограф нужен для ремонта различных схем, проверка искажений усилителя, настройки звуковой техники и т.п. Очень часто низкочастотный осциллограф используется при диагностике работы датчиков в автомобиле.
В этом ряде случаем вам поможет наипростейший осциллограф, сделанный из вашего персонального компьютера. Нет, ваш компьютер никак не придется разбирать и дорабатывать. Вам понадобится всего на всего спаять приставку – делитель, и подключить её к ПК через звуковой вход. А для отображения сигнала установить специальный софт. Вот за пару десятков минут у вас появится собственный осциллограф, который вполне может сгодится для анализа сигналов. Кстати можно использовать не только стационарный ПК, но и ноутбук или нетбук.
Конечно, такой осциллограф с большой натяжкой сравним с настоящим прибором, так как имеет маленький диапазон частот, но вещь в хозяйстве очень полезная, чтобы посмотреть выхода усилителя, различные пульсации источников питания и тп.

Схема приставки

Согласитесь, что схема невероятна проста и не потребует много времени для её сборки. Это делитель - ограничитель, который защитит звуковую карту вашего компьютера от опасного напряжения, которое вы можете случайно падать на вход. Делитель может быть на 1, на 10 и на 100. Переменным резистором регулируется чувствительность всей схемы. Подключается приставка к линейному входу звуковой карты ПК.

Собираем приставку

Можно взять бокс от батареек как я или другой пластиковый корпус.

Программное обеспечение

Программа «осциллограф» будет визуализировать сигнал, поданный на вход звуковой карты. Я предложу вам на скачивание два варианта:
1) Простая программа без установки с русским интерфейсом, качаем.

(cкачиваний: 9893)



2) И вторая с установкой, скачать её можно – .


Какой пользоваться – выбирать вам. Возьмите и установите обе, а там выберете.
Если у вас уже установлен микрофон, то после установки и запуска программы можно уже будет наблюдать звуковые волны, которые поступают в микрофон. Значит все хорошо.
Для приставки никаких драйверов больше не потребуется.
Подключаем приставку ко линейному или микрофонному входу звуковой карты и пользуемся на здоровье.


Если у вас никогда в жизни не было опыта работы с осциллографом, то я искренне рекомендую вам повторить эту самоделку и поработать с таким виртуальным прибором. Опыт очень ценный и интересны.

Самодельные осциллографы перестают быть редкостью по мере развития микроконтроллеров. И естественным образом возникает потребность в щупе для него. Желательно со встроенным делителем. Некоторые из возможных конструкций рассмотрены в данной статье.

Щуп собран на отрезке фольгированного стеклотестолита и помещен в металлическую трубку, выполняющую роль экрана. Чтобы не вызывать аварийных ситуаций, когда и если щуп падает на включенное испытуемое устройство, трубка покрыта термоусадкой. Без покрытия заготовка выглядит вот так:

Щуп в разобранном виде:

Конструкции могут быть разными. Просто нужно учитывать некоторые вещи:

  • Если выполняете щуп без делителя, т.е. он не содержит в себе больших сопротивлений и переключателей, т.е. элементов подверженных электромагнитным наводкам, то целесообразно экранированный провод щупа протягивать до самой иглы. В этом случае дополнительная экранировка элементов вам не понадобится и щуп можно выполнять из любого диэлектрика. Например использовать один из щупов для тестера.
  • Если в щупе выполнен делитель, то когда вы берете его в руки, вы неизбежно будете увеличивать наводки и помехи. Т.е. потребуется экранировка элементов делителя.

В моем случае соединение трубки с экраном (точнее с обратной стороной стеклотестолита) выполнено припаиванием пружинки на тектолит, которая и создает контакт между экраном и платой щупа.

В качестве иглы использовал «Папу» от разъема типа ШР. Но ее можно выполнить и из любого другого подходящего стержня. Разъем от ШР удобен тем, что его «Маму» можно впаять в зажим, который можно будет при необходимости надевать на щуп.

Подбор провода

Отдельного упоминания заслуживает подбор провода. Правильный провод выглядит так:

Миниджек 3,5 мм расположен рядом для масштаба

Правильный провод представляет из себя более-менее обычный экранированный провод, с одним существенным отличием - центральная жила у него одна. Очень тонкая и выполнена из стальной проволоки, а то и проволоки с высоким удельным сопротивлением. Почему именно так поясню немного позже.

Такой провод не сильно распространен и найти его достаточно непросто. В принципе, если вы не работаете с высокими частотами порядка десятка мегагерц, особой разницы, использовав обычный экранированный провод, вы можете и не ощутить. Встречал мнение, что на частотах ниже 3-5 МГц выбор провода не критичен. Ни подтвердить, ни опровергнуть не могу - нет практики на частотах выше 1 МГц. В каких случаях это может сказываться тоже скажу позже.

Самодельные осциллографы нечасто имеют полосу пропускания в несколько мегагерц, поэтому используйте тот провод, который найдете. Просто стремитесь подобрать такой, у которого центральные жилы потоньше и их поменьше. Встречал мнение, что центральная жила должна быть потолще, но это явно из серии «вредных советов». Малое сопротивление проводу осциллографа без надобности. Там токи в наноамперах.

И важно понимать, чем ниже собственная емкость изготовленного щупа, тем лучше. Это связано с тем, что когда вы подключаете щуп к исследуемому устройству, вы тем самым подключаете дополнительную емкость.

Если подключаете напрямую на выход логического элемента либо в ИБП, т.е. к достаточно мощному источнику сигнала, имеющему достаточно малое собственное сопротивление, то все будет отображаться нормально. Но если в цепи есть значительные сопротивления, то емкость щупа будет сильно искажать форму сигнала, т.к. будет заряжаться через это сопротивление. А это означает, что вы уже не будете уверены в достоверности осциллограммы. Т.е. чем ниже собственная емкость щупа, тем шире диапазон возможных применений вашего осциллографа.

Принципиальные схемы щупов

Собственно схема щупа, которую я применил, предельно проста:

Это делитель на 10 для осциллографа с входным сопротивлением 1 мегом. Сопротивление лучше составить из нескольких, соединенных последовательно. Переключатель просто замыкает напрямую добавочное сопротивление. А подстроечный конденсатор позволяет согласовать щуп с конкретным прибором.

Пожалуй вот более правильная схема, которую стоило бы рекомендовать:

Она явно лучше по допустимому напряжению, так как пробивное напряжение резисторов и конденсаторов СМД обычно принимают за 100 вольт. Встречал утверждения, что они выдерживают и 200-250 вольт. Не проверял. Но если вы исследуете достаточно высоковольтные цепи, стоит применить именно такую схему.

Немного обещанной теории

Емкость прямо пропорциональна площади проводников и обратно пропорциональна расстоянию между ними. Там еще есть коэффициент, но для нас это не важно сейчас.

Имеем два проводника. Центральная жила и экран провода. Расстояние между ними определяется диаметром провода. Площадь экрана сильно снизить не получится. Да и не надо. Остается снижать ПЛОЩАДЬ ПОВЕРХНОСТИ ЦЕНТРАЛЬНОЙ ЖИЛЫ.

Т.е. снижать ее диаметр насколько это технически целесообразно без потери механической прочности.

Ну а чтобы повысить эту самую прочность при уменьшении диаметра надо выбрать материал попрочнее.

Провод можно представить так:

Распределенная емкость по длине провода. Ну а чем больше будет удельное сопротивление материала центральной жилы, тем меньшее влияние соседние участки (соседние емкости) будут оказывать друг на друга. Поэтому целесообразен провод с высоким удельным сопротивлением. По этой же самой причине нецелесообразно делать провод щупа слишком длинным.

Разъемы рассматривать не буду. Лишь скажу, что оптимальным для осциллографа считаю разъемы BNC. Они чаще всего и применяются. Миниджек, аудиоразъем я бы применять не рекомендовал (хотя сам применяю, в силу того, что не использую осциллограф в цепях со значительными напряжениями). Он опасен. Дернули провод при проведении исследований цепей с хорошим напряжением. Что происходит далее? А далее миниджек, скользя по гнезду, может вызвать замыкание. И даже если в силу разных причин ничего не произошло, на самом миниджеке будет присутствовать это напряжение. А если он упадет к вам на колени? А там открытый центральный контакт и земля рядом...

Дополнительную информацию можно почерпнуть из цикла статей . Так, теорией поутомлялись, теперь

Щуп № 2

Он хорош тем, что его можно вставить так:

Или вот так, ему безразлично, он свободно крутится.

Устроен он примерно так:

Единственное, что на нем еще будет сделано. Отверстие для выхода провода земли из щупа будет залито каплей термоклея, чтобы сложнее было вырвать его при случайном рывке и провод будет зафиксирован в рукоятке отрезком спички, заточенным под пологий клин.

Чтобы не оборвать и не открутить центральную жилу. Кстати это самый простой способ «лечить» дешевые китайские щупы для тестера, чтобы провод не отламывался от наконечника.

На что стоит обратить внимание: Экран доходит почти до самого наконечника. Не должно быть под пальцами значительного по площади открытого участка центральной жилы, иначе вы будете любоваться наводками с рук на дисплее ослика.

Специально для сайта Радиосхемы - Тришин А.О. Г. Комсомольск-на Амуре. Август 2018 г.

Обсудить статью САМОДЕЛЬНЫЙ ЩУП ДЛЯ ОСЦИЛЛОГРАФА

Вне зависимости от класса приборов для анализа тех или иных сигналов необходимо довести до входов устройств исследуемые сигналы. Их источники очень редко удается вплотную приблизить к входам осциллографов и анализаторов. Часто они расположены на расстоянии от долей метра до нескольких метров. Это означает, что нужны специальные согласующие устройства, включаемые между источниками сигналов и входами осциллограф и анализаторов.
Обычно пробники используются для реализации следующих важных целей:

  • удаленного подключения осциллографа к объекту исследования;
  • уменьшения чувствительности каналов вертикального (иногда и горизонтального) отклонения и исследования сигналов повышенного уровня (пассивные пробники);
  • развязки измерительных цепей от узлов осциллографа (оптические пробники);
  • большого ослабления сигнала и исследования сигналов в высоковольтных цепях (высоковольтные пробники);
  • увеличения входного сопротивления и уменьшения входной емкости (компенсированные делители и пробники - повторители);
  • коррекции амплитудно-частотной характеристики системы пробник-осциллограф;
  • получения осциллограмм тока (токовые пробники);
  • выделения противофазных сигналов и подавления синфазных сигналов (дифференциальные пробники);
  • повышения чувствительности осциллографов (активные пробники);
  • специальных целей (например, согласования выходов источников широкополосных сигналов с 50-Омным входом осциллографа).

Совершенно очевидно, что роль пробников очень важна и порой ничуть не уступает важности самих осциллографов и анализаторов. Но, часто, роль пробников недооценивается и это является серьезной ошибкой начинающих пользователей этими приборами. Ниже рассмотрены основные типы пробников и других аксессуаров для осциллографов и анализаторов спектров и сигналов, а также логических анализаторов.

Пробники на основе компенсированного делителя

Простейшим и давно применяемым типом пробников являются пассивные пробники с компенсированным делителем напряжения - рис.5.1. Делитель напряжения строится на резисторах R1 и R2, причем R2 может быть просто входным сопротивлением осциллографа.

Рис. 5.1. Схема компенсированного делителя

Параметры делителя на постоянном токе вычисляются по формулам:

Например, если R2= 1 МОм и R1=9 МОм, то имеет RВХ = 10 МОм и KД=1/10. Таким образом, входное сопротивление увеличено в 10 раз, но в 10 раз падает и уровень напряжения, поступающего на вход осциллографа.

В общем случае (на переменном токе) для коэффициента передачи делителя можно записать выражение (τ1= R1C1 и τ2= C2R2):


. (5.3)

Таким образом, при равенстве постоянных времени τ1 и τ2, коэффициент передачи делителя перестает зависеть от частоты и равен его значению на постоянном токе. Такой делитель называют компенсированным. Емкость C2 это общая емкость кабеля, монтажа и входная емкость осциллографа. Практически, для достижения условия компенсации емкость С1 (или C2) нужно подстраивать, например с помощью подстроечного конденсатора переменной емкости - триммера (см. рис. 5.2.). Регулировка выполняется специальной пластиковой отверткой, входящей в комплект аксессуаров пробников. Он включает в себя разные наконечники, переходники, цветные наклейки и другие полезные «мелочи».

Рис. 5.2. Конструкция стандартного пассивного пробника HP-9250 на основе частотно-компенсированного делителя

При компенсации искажения прямоугольного импульса (меандра), обычно создаваемого встроенным в осциллограф калибратором, отсутствуют (см. рис. 5.3). При спаде вершины импульса наблюдается недокомпенсация, а при нарастании - перекомпенсация. Характер осциллограмм при этом также показан на рис. 3 (сняты осциллографом TDS 2024 с пробником P2200 ). Рекомендуется проводить компенсацию при максимально большом изображении осциллограммы соответствующего канала.

Рис. 5.3. Осциллограммы импульсов калибратора осциллографа Tektronix TDS 2024 при разной степени компенсации (сверху-вниз): нормальной компенсации, перекомпенсации и недокомпенсации

При работе с многоканальным осциллографом следует применять пробники индивидуально для каждого канала. Для этого их надо пометить (если это уже не сделано на заводе) пробники наклейками разного цвета, обычно соответствующими цветам линий осциллограмм. Если не придерживаться этого правила, то из-за неизбежного разброса входных емкостей каждого канала компенсация будет неточной.

Для делителя 1:10 резистор R1 должен быть равен 9R2. Это означает, что емкость C1 должна быть в 9 раз меньше входной емкости C2. Входная емкость делителя определяется последовательным соединением С1 и C2:


(5.4)

Приближенное значение справедливо при KД»1 и С1«С2. При KД =10 входная емкость делителя почти в 10 раз меньше входной емкости осциллографа. Следует помнить, что в C2 входит не только истинная входная емкость осциллографа, но и емкость С1 увеличивается на величину емкости монтажа. Поэтому на самом деле уменьшение входной емкости делителя по сравнению с входной емкостью осциллографа будет не столь заметным. Тем не менее, именно это и объясняет значительное уменьшение искажений фронтов импульсов при работе с делителем.

Увеличение активной составляющей входного сопротивления делителя не всегда полезно, поскольку ведет и изменению нагрузки на испытуемое устройства и получении разных результатов при отсутствии делителя и при его применении. Поэтому делители часто проектируются так, что бы входное сопротивление осциллографа оставалось неизменным как при работе без делителя, так и при работе с ним. В этом случае делитель не увеличивает входное сопротивление осциллографа, но все же уменьшает входную емкость.

Повышение уровня исследуемых сигналов

Максимальное напряжение на входе осциллографа определяется произведением числа делений его масштабной сетки на коэффициент отклонения по вертикали. Например, если число делений масштабной сетки равно 10, а коэффициент отклонения равен 5 В/дел, то полный размах напряжения на входе равен 50 В. Часто это не достаточно для исследования сигналов даже умеренно высокого уровня - выше десятков вольт.

Большинство пробников позволяет увеличить максимальное исследуемое напряжение на постоянном токе и низкой частоте с десятков В до 500-600 В. Однако на высоких частотах реактивная мощность (и активная, выделяемая на сопротивлении потерь конденсаторов пробника) резко растет и нужно снижать максимальное напряжение на входе пробника - рис.5.4. Если не учитывать этого обстоятельства, то можно просто сжечь пробник!

Рис. 5.4. Зависимость максимального напряжения на входе пробника от частоты

Никогда не следует превышать уровень максимального напряжения на входе пробника на высоких частотах сигнала. Это может привести к перегреву пробника и выходу его из строя.

Разновидностью пассивных пробников являются высоковольтные пробники . Обычно они имеют коэффициент деления 1/100 или 1/1000 и входное сопротивление 10 или 100 МОм. Маломощные резисторы делителя пробника обычно выдерживают без пробоя напряжения до 500-600 В. Поэтому в высоковольтных пробниках резистор R1 (и конденсатор C1) приходится выполнять с применением последовательно включенных компонентов. Это увеличивает размеры измерительной головки пробника.

Вид высоковольтного пробника Tektronix P6015A показан на рис. 5.5. Пробник имеет корпус с хорошей изоляцией с выступающим кольцом, предотвращающим соскальзывание пальцев к цепи, осциллограмма напряжения которой снимается. Пробник можно использовать при напряжении до 20 кВ на постоянном токе и до 40 кВ при импульсах большой скважности. Частотный диапазон осциллографа с таким пробником ограничен 75 МГц, что с избытком достаточно для измерений в высоковольтных цепях.

Рис. 5.5. Внешний вид высоковольтного пробника Tektronix P6015A

При работе с высоковольтными пробниками надо соблюдать максимально возможные меры предосторожности. Вначале подключите провод заземления, а лишь затем подключите иглу пробника к точке, осциллограмму напряжения на которой нужно получить. Рекомендуется закрепить пробник и вообще убрать руки от него при проведении измерений.

Высоковольтные пробники выпускаются как для цифровых, так и аналоговых осциллографов. Например, для уникальных широкополосных аналоговых осциллографов серии ACK7000/8000 выпускается пробник HV-P30 с полосой частот до 50 МГц, коэффициентом деления 1/100, максимальным напряжением синусоиды (от пика до пика) 30 кВ и максимальным напряжением импульсного сигнала до 40 кВ. Входное сопротивление пробника 100 МОм, входная емкость 7 пФ, длина кабеля 4 м, выходной разъем BNC. Другой пробник HV-P60 с коэффициентом деления 1/2000 может применяться при максимальных напряжениях до 60 кВ для синусоиды и до 80 кВ для импульсного сигнала. Входное сопротивление пробника 1000 МОм, входная емкость 5 пФ. О серьезности этих изделий красноречиво говорит их высокая цена - около 66 000 и 124 000 рублей (по данным прайс-листа компании Эликс).

Пробники с коррекцией частотной характеристики

Часто пассивные пробники используются для коррекции амплитудно-частотной характеристики осциллографов. Иногда это коррекция, рассчитанная на расширение полосы частот, но чаще решается обратная задача - сужение полосы частот для уменьшения влияния шума при наблюдении сигналов малого уровня и устранения быстрых выбросов на фронтах импульсных сигналов.
Такими пробниками (P2200) комплектуются массовые осциллографы серий Tektronix TDS 1000B/2000B. Внешний вид их показан на рис. 5.6.

Основные параметры пробников приведены в табл. 5.1.

Таблица 5.1. Основные параметры пассивных пробников P2200

Рис. 5.6. Пассивный пробник P2200 с встроенным фильтром низких частот в положении переключателя деления напряжений 1/10

Из табл. 5.1 хорошо видно, что применение пробника с коэффициентом деления 1/1 целесообразно только при исследовании низкочастотных устройств, когда достаточно полоса частот до 6,5 МГц. Во всех других случаях целесообразно работать с пробником при коэффициенте деления 1/10. При этом входная емкость уменьшается со 110 пФ до примерно 15 пФ, а полоса частот расширяется с 6,5 МГц до 200 МГц. Осциллограммы меандра с частотой 10 МГц, показанные на рис. 5.7, хорошо иллюстрируют степень искажения осциллограмм при коэффициенте деления 1/10 и 1/1. В обоих случаях использовалось стандартное включении пробников с зацепляющейся насадкой и длинным проводом заземления (10 см) с крокодилом. Меандр с временем нарастания 5 нс был получен от генератора Tektronix AFG 3101.

Рис. 5.7. Осциллограммы импульсов (меандра) с частотой 10 МГц при использовании 200-МГц осциллографа Tektronix TDS 2024В с пробниками P2200 при коэффициенте деления 1/10 (верхняя осциллограмма) и 1/1 (нижняя осциллограмма)

Нетрудно заметить, что в обоих случаях осциллограммы наблюдаемого сигнала (а он у генераторов AFG 3101 на частоте 10 МГц близок к идеальному и имеет гладкие вершины без намека на «звон») сильно искажены. Однако характер искажения разный. При положении делителя 1/10 форма сигнала близка к меандру и имеет фронты малой длительности, но искажена затухающими колебаниями, возникающими из-за индуктивности длинного заземляющего провода - рис. 8. А в положении делителя 1/1 затухающие колебания пропали, но явно заметно значительное возрастание постоянной времени системы «пробник-осциллограф». В результате вместо меандра наблюдаются пилообразные импульсы с экспоненциальными нарастанием и спадом.

Рис. 5.8. Схема включения пробника к нагрузке RL

Пробники с встроенной коррекцией надо применять строго по их назначению с учетом сильного различия частотных характеристик при разном положении делителя напряжения.

Учет параметров пробников

Приведем типовые данные схемы рис. 5.8: внутреннее сопротивление источника сигнала Ri=50 Ом, сопротивление нагрузки RL>>Ri, входное сопротивление пробника RP=10 МОм, входная емкость пробника CP=15 пФ. При таких данных элементов схемы она вырождается в последовательный колебательный контур, содержащие сопротивление R≈Ri, индуктивность земляного проводе L≈LG (порядка 100-120 нГ) и емкость C≈CP.

Если на вход такого контура подать идеальный перепад напряжения E, то временная зависимость напряжения на C (и входе осциллографа) будет иметь вид:


(5.5)

Расчеты показывают, что эта зависимость может иметь значительный выброс при больших L и малых R, что и наблюдается на верхней осциллограмме рис. 5.7. При α/δ=1 этот выброс составляет не более 4 % от амплитуды перепада, что является вполне удовлетворительным показателем. Для этого величину L=LG надо выбирать равной:

Например, если C=15 пФ и R=50 Ом, то L=19 нГ. Для уменьшения L до такой величины (с типовой порядка 100-120 нГ для земляного провода длиной 10 см) надо укоротить земляной (возможно и сигнальный) провод до длины менее 2 см. Для этого следует снять насадку с головки пробника и отказаться от использования стандартного земляного провода. Начало пробника в этом случае будет представлено контактной иглой и цилиндрическим земляной полоской (рис. 5.9) с малой индуктивностью.

Рис. 5.9. Головка пробника со снятым наконечником (слева) и переходник к коаксиальному разъему (справа)

Эффективность применяемых для борьбы со «звоном» мер иллюстрирует рис. 5.10. На нем показаны осциллограммы 10-МГц меандра при обычном включении пробника и включении со снятой насадкой и без длинного провода земли. Хорошо видно практически полное устранение явных затухающих колебательных процессов на нижней осциллограмме. Небольшие колебания на вершине связаны с волновыми процессами в соединительном коаксиальном кабеле, который в таких пробниках работает без согласования на выходе, что порождает отражения сигнала.

Рис. 5.10. Осциллограммы 10-МГц меандра при обычном включении пробника (верхняя осциллограмма) и включении со снятой насадкой и без длинного провода земли (нижняя осциллограмма)

Для получения осциллограмм с предельно малыми временами нарастания и «звоном» следует принять меры по предельному уменьшению индуктивности измеряемой цепи: удаление насадки пробника и подключение пробника с помощью иглы и цилиндрической заземляющей вставки. Следует принимать все возможные меры по уменьшению индуктивности цепи, сигнал в которой наблюдается.
Важными параметрами системы пробник-осциллограф является время нарастания системы (на уровнях 0,1 и 0.9) и полоса частот или максимальная частота (на уровне спада чувствительности на 3 дб). Если воспользоваться известным значением резонансной частоты контура

, (5.7)
то можно выразить значение R через резонансную частоту контура, определяющую предельную частоту тракта отклоняющей системы:

. (5.8)
Нетрудно доказать, что время достижения напряжением u(t) значения E амплитуды перепада будет равно:


. (5.10)

Это значение обычно и принимают за время установления пробника с оптимальной переходной характеристикой. Общее время нарастания осциллографа с пробником можно оценить как:

, (5.11)
где tосц - время нарастания осциллографа (при подаче сигнала прямо на вход соответствующего канала). Верхняя граничная частота fмакс (она же и полоса частот) определяется как

. (5.12).
К примеру, осциллограф имеющий t0=1 нс имеет fмакс=350 МГц. Иногда множитель 0,35 увеличивают до 0,4-0,45, поскольку АЧХ многих современных осциллографов с fмакс>1 ГГц отличается от Гауссовской, для которой характерен множитель 0,35.

Не стоит забывать о еще одном важном параметре пробников - времени задержки сигнала tз. Это время определяется, прежде всего, погонным временем задержки (на 1 м длины кабеля) и длиной кабеля. Оно обычно составляет от единиц до десятков нс. Чтобы задержка не влияла на взаимное расположение осциллограмм на экране многоканального осциллографа нужно использовать во всех каналах пробники одного типа с кабелями одинаковой длины.

Подключение пробников к источникам сигналов

Подключение пробников к нужным точкам исследуемых устройств может осуществляться с помощью различных наконечников, насадок, зацепок и «микро-крокодилов» которые часто входят в комплект аксессуаров пробника. Однако чаще всего наиболее точные измерения выполняются при подключении с помощью первичной иглы пробника - см. рис. 5.11 или двух игл. При разработке высокочастотных и импульсных устройств на печатной плате для этого предусматриваются специальные контактные площадки или металлизированные отверстия.

Рис. 5.11. Подключение пробника к контактным площадкам печатной платы исследуемого устройства

Особенно актуально в наше время подключение пробников к контактным площадкам миниатюрных печатных плат, гибридных и монолитных интегральных микросхем }