Рефлектор антенны. Устройство антенны. Направленность антенны. Изготовление антенн. Сборка антенны Смотреть что такое "Рефлектор антенны" в других словарях

Наружная антенна. Рефлекторы . Направленность антенны.

Мы выяснили от чего зависит дальность приема

Рассмотрели вопрос выбора кабеля

Подключили антенну к телевизору с помощью штекера

Из чего делать антенну (и вибратор) мы выяснили

Все вопросы изготовления антенн и конструкции антенн смотрите

У антенн есть важный параметр - ПЗО - это передне-заднее отношение.Этот параметр характеризует направленность

Антенны. ПЗО зависит от конструкции и качества изготовления рефлектора. То есть: чем меньше антенна "реагирует"

На боковые и задние сигналы и дает максимальный потенциал от переднего сигнала, тем лучше. Это, конечно,

Упрощенное пояснение ПЗО.

Устройство антенны. Рефлекторы.

Теперь рассмотрим такой элемент антенны, как рефлектор (отражатель). Собирать рефлекторы будем из нескольких

Деталей. Самый простой рефлектор эфирных антенн, который Вы могли видеть, - это трубка, закрепленная

Перпендикулярно стреле антенны (рис.1).

Если Вам нужны программы для расчета антенн аналогового и цифрового телевидения, мобильного

телефона , то их описание и

Обычно такие рефлекторы устанавливали на антенны метрового диапазона. Причем, на антенны для самой большой

длины волны метрового диапазона.

Рис. 1

В более коротковолновом диапазоне метрового диапазона применялись рефлекторы, показанные на рис. 2. Вся

Конструкция крепилась к горизонтальной стреле. Иногда такие рефлекторы использовали и в дециметровом

Диапазоне.

Рис. 2 Устройство антенны. Направленность антенны. Изготовление антенн. Сборка антенны.

Наиболее часто можно было увидеть антенны дециметрового диапазона, изготовленные по схеме рис. 3. Устройство

Антенны с рефлектором по этой схеме выполнено, как и по схеме рис. 2, но увеличено количество элементов.

Здесь мы имеем более трудоемкую конструкцию. Чтобы обеспечить хорошую направленность антенны (ПЗО),

Приходится устанавливать достаточно много элементов на малом расстоянии друг от друга.

Рис. 3 Устройство антенны. Направленность антенны. Изготовление антенн. Сборка антенны.

На рис. 4 изготовлена антенна с рефлектором в виде металлической рамки, на которой вместо трубок натянута

Относительно тонкая проволока. Сборка антенны с таким рефлектором значительно проще, чем по схеме рис.3.Чтобы

Получить ПЗО максимальных величин, необходимо располагать параллельную проволоку на расстоянии λ/20 .

λ - наименьшая длина волны, принимаемого сигнала.

Рис. 4 Устройство антенны. Направленность антенны. Изготовление антенн. Сборка антенны.

На рис. 5 представлен рефлектор направленной антенны, изготовленный, как и по схеме рис.4, из металлической

Рамки, но вместо проволоки на рамке натянута металлическая сетка. Во всех устройствах антенн необходимо

Обеспечить хороший электрический контакт трубок, проволоки и сетки с металлической рамкой, а в случае с сеткой,

Кроме того, необходимо пропаять или сварить узлы сетки.

Или совокупность вторичных излучателей, расположенные по отношению к первичному излучателю со стороны, противоположной главному лепестку диаграммы направленности антенны с целью увеличения коэффициента направленного действия антенны

Употребляется в документе:

ГОСТ 24375-80

Телекоммуникационный словарь . 2013 .

Смотреть что такое "Рефлектор антенны" в других словарях:

    рефлектор антенны - рефлектор Ндп. отражатель Вторичный излучатель антенны или совокупность вторичных излучателей, расположенные по отношению к первичному излучателю со стороны, противоположной главному лепестку диаграммы направленности антенны с целью увеличения… … Справочник технического переводчика

    Рефлектор антенны - 397. Рефлектор антенны Рефлектор Ндп. Отражатель Источник: ГОСТ 24375 80: Радиосвязь. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    РЕФЛЕКТОР - (ново лат., от лат. reflectere отклонять, загибать назад). Отражатель; вогнутое зеркало, для отражения лучей и усиления через это света; снаряд для отражения тепла. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910.… … Словарь иностранных слов русского языка

    Рефлектор - Рефлектор отражатель или зеркало антенны либо другого источника или приёмника какого либо излучения. Рефлектор (телескоп) телескоп, объективом которого является зеркало. Рефлектор распространённое в обиходе название бытового… … Википедия

    РЕФЛЕКТОР - (от лат. reflecto обращаю назад отражаю),1) отражатель устройство, состоящее из одного или нескольких зеркал и обеспечивающее почти полное отражение падающих на него электромагнитных (напр., световых) или звуковых волн. Отражающая поверхность… … Большой Энциклопедический словарь

    рефлектор - а, м. reflecteur, нем. Reflektor <лат. reflectere обращать назад. 1. Отражатель света в форме вогнутого зеркала. БАС 1. В передней.. на стене висел жестяной подсвечник с рефлектором, какой в Москве почему то называется передней лампой.… … Исторический словарь галлицизмов русского языка

    рефлектор - а; м. [от лат. reflectere обращать назад, отражать] 1. Отражатель лучей, исходящих от источника света. Надеть на лампу р. // Разг. Источник света, снабжённый таким отражателем. Осветить рефлекторами сцену. Работать при свете рефлекторов. 2.… … Энциклопедический словарь

    РЕФЛЕКТОР - (от лат. reflecto загибаю назад, поворачиваю) 1) телескоп, в к ром изображение небесного светила создаётся вогнутым зеркалом или системой зеркал. Приёмник излучения может располагаться в гл. фокусе параболич. зеркала, сбоку от трубы Р., позади… … Большой энциклопедический политехнический словарь

    Рефлектор (зеркало) - Радиоантенна с рефлектором (задний, самый длинный стержень) … Википедия

    Рефлектор - (от лат. reflecto обращаю назад отражаю) 1) Отражатель устройство, состоящее из одного или нескольких зеркал и обеспечивающее почти полное отражение падающих на него электромагнитных (напр., световых) или звуковых волн. Отражающая поверхность… … Астрономический словарь

Первая параболическая антенна, разработанная Генрихом Герцем

Параболическая антенна была изобретена немецким физиком Генрихом Герцем в 1887 году. Герц использовал цилиндрические параболические рефлекторы для искрового возбуждения дипольных антенн во время своих экспериментов. Антенна имела размер апертуры в 1,2 метра шириной и использовалась на частоте около 450 МГц. Отражатель был сделан из цинковой листовой стали. С двумя такими антеннами, одна из которой была передающей, а другая - приёмной, Герц успешно продемонстрировал существование электромагнитных волн, которые 22 годами раньше были предсказаны Максвеллом.

Обычно в зеркальных антеннах происходит преобразование более широкой диаграммы направленности облучателя в узкую диаграмму направленности самой антенны .

Кромка зеркала и плоскость Z образуют поверхность, называемую раскрывом зеркала. При этом радиус R называется радиусом раскрыва, а угол 2ψ - углом раскрыва зеркала. От угла раскрыва зависит тип зеркала :

  • если ψ < π/2 - зеркало называют мелким или длиннофокусным;
  • если ψ > π/2 - глубоким или короткофокусным,
  • если ψ = π/2 - средним.

Фокус облучателя антенны может как располагаться в фокусе зеркала F, так и быть смещённым относительно него. Если фокус облучателя расположен в фокусе антенны, то она называется прямофокусной . Прямофокусные антенны существуют различных размеров, в то время как осенесимметричные антенны, облучатель которых находится не в фокусе зеркала, обычно не превышают в диаметре более 1,5 м . Такие антенны часто называют офсетными . Преимущество офсетной антенны - это бо́льший коэффициент усиления антенны, что обусловлено отсутствием затенения раскрыва зеркала облучателем . Рефлектор офсетных антенн представляет собой боковую вырезку из параболоида вращения. Фокус облучателей в таких антеннах расположен в фокальной плоскости рефлектора.

Зеркальная антенна может иметь дополнительное эллиптическое зеркало (двухзеркальная схема Грегори) или дополнительное гиперболическое зеркало (двухзеркальная схема Кассегрена), с фокусами, расположенными в фокальной плоскости зеркальной антенны. При этом облучатель расположен в фокусе дополнительного зеркала.

Зеркальная антенна может иметь одновременно несколько облучателей, расположенных в фокальной плоскости антенны. Каждый облучатель формирует диаграмму направленности, направленную в нужном направлении. Облучатели могут работать в разных диапазонах волн ( , , ) или каждый одновременно в нескольких диапазонах.

Расположение фокуса и фокальной плоскости зеркала антенны не зависит от рабочего диапазона волн.

В зависимости от поставленных задач и облучателя зеркальная антенна формирует одну узконаправленную суммарную, суммарно-разностную диаграмму направленности (для пеленгаторов) или одновременно несколько разнонаправленных диаграмм - при использовании нескольких облучателей.

Типы зеркал

В технике наибольшее распространение нашли следующие типы зеркал:

Особенности конструкции

Зеркало обычно состоит из диэлектрической основы (углепластик - для космических антенн), которую покрывают металлическими листами, проводящей краской, фольгой . При этом листы часто являются перфорированными или представляют собой сетку, что обусловлено стремлением снизить вес конструкции, а также максимально снизить сопротивление ветру и осадкам. Однако такое несплошное зеркало приводит к следующим последствиям: часть энергии проникает сквозь зеркало, что приводит к ослаблению КНД антенны, и усилению излучения позади рефлектора. Эффективность антенны с несплошным зеркалом рассчитывается по формуле T = P p r P p a d {\displaystyle T={\frac {P_{pr}}{P_{pad}}}} , где P p r {\displaystyle P_{pr}} - мощность излучения позади рефлектора, а P p a d {\displaystyle P_{pad}} - мощность излучения рефлектора (падающей волны) . Если T < 0 , 01 {\displaystyle T<0,01} , несплошное зеркало считают хорошим. Данное условие обычно выполняется при диаметре отверстий перфорированного зеркала менее 0 , 2 λ {\displaystyle 0,2\lambda } и суммарной площади отверстий до 0 , 5 − 0 , 6 {\displaystyle 0,5-0,6} от всей площади зеркала . Для сетчатых зеркал диаметр отверстий не должен превышать 0 , 1 λ {\displaystyle 0,1\lambda } .

Облучатель

Диаграмма направленности параболической антенны формируется облучателем . Облучателей в антенне может быть один или несколько, соответственно в антенне формируется одна или несколько диаграмм направленности. Делается это, например, для того, чтобы принимать сигнал одновременно с нескольких космических спутников связи.

Раскрыв облучателей расположен в фокусе параболического рефлектора или в его фокальной плоскости, если используется несколько облучателей в одной антенне. Несколько облучателей формируют в одной антенне несколько диаграмм направленности, это необходимо при наведении одной антенны сразу на несколько спутников связи.

Ширина луча

Параметры параболической антенны. Ширина ДН, уровень боковых лепестков, усиление

Угловая ширина луча антенны и её диаграмма направленности не зависит от того, работает ли антенна на приём или на передачу. Ширина луча определяется по уровню половинной мощности луча, то есть по уровню (-3 дБ) от его максимального значения. Для параболических антенн этот уровень определяется по формуле:

θ = k λ / d {\displaystyle \theta =k\lambda /d\,} ,

где K является фактором, который незначительно меняется в зависимости от формы отражателя, а d - диаметр рефлектора в метрах, ширина диаграммы по половинной мощности θ в радианах. Для 2-х метровой спутниковой антенны, работающей C диапазоне (3-4 ГГц на приём и 5-6 ГГц на передачу), эта формула даёт ширину диаграммы направленности около 2,6°.

Усиление антенны определяется по формуле:

G = (π k θ) 2 e A {\displaystyle G=\left({\frac {\pi k}{\theta }}\right)^{2}\ e_{A}}

При этом существует обратная зависимость между усилением и шириной луча.

Параболические антенны больших диаметров формируют очень узкие лучи. Наведение таких лучей на спутник связи становится проблемой, так как вместо основного лепестка можно навести антенну на боковой лепесток.

Диаграмма направленности антенны представляет собой узкий главный луч и боковые лепестки. Круговая поляризация в главном луче задаётся в соответствии с задачами, уровень поляризации в разных местах главного луча разный, в первых боковых лепестках поляризация меняется на противоположную, левая - на правую, правая - на левую.

Характеристики зеркальных антенн

Характеристики зеркальной антенны измеряются в дальней зоне.

  • В однозеркальной антенне с круговой поляризацией облучатель должен иметь направление вращения поля, противоположное заданному направлению вращения поля антенны.
  • Зеркальные антенны с направлением ДН на движущийся объект обычно имеют электропривод для отслеживания углового направления за объектом.
  • Измерения ДН больших зеркальных антенн в дальней зоне связано с большими трудностями, связанными со значительными расстояниями от антенн до мест измерения их сигналов. Для измерений ДН используют шумовые сигналы от Солнца, спутников связи, большие коллиматорные антенны.
  • Большие зеркальные антенны, расположенные в разных местах планеты Земля, используются в качестве элементов антенных решёток, для исследования дальнего космоса.

Применение

Параболические антенны используются в качестве антенн с большим усилением для следующих видов связи: радиорелейная связь между близлежащими городами, беспроводная связь WAN / LAN линий связи для передачи данных, для спутниковой связи и связи между космическими аппаратами. Они также используются для радиотелескопов.

Параболические антенны также используются в качестве радиолокационных антенн, управляющих кораблями, самолётами и управляемыми ракетами. С появлением домашних спутниковых телевизионных приёмников, параболические антенны стали особенностью ландшафтов современных городов.

Антенны с уголковым рефлектором достаточно просты в изготовлении и по этой причине раньше пользовались у радиолюбителей большой популярностью. Эти антенны имеют усиление, сравнимое с усилением, которое обеспечивает антенна Уда-Яги, но по сравнению с последними требуют применения большего количества материалов.

Схема уголковой антенны (так иногда называют рассматриваемые антенны) приведена на рис. 6.53. Излучающим элементом обычно служит полуволновый диполь. Обычно этот элемент выполняют с малым отношением l/d , что способствует расширению диапазона рабочих частот. Уголковый рефлектор выполняется из набора диполей длиной H ≥ 0,6λ , размешенных на расстоянии G = 0,1λ друг от друга. Длина стороны рефлектора L зависит от расстояния S между вибратором и вершиной отражателя, а также от угла раскрыва уголкового рефлектора.

Рассмотрим процесс отражения волны от уголкового рефлектора. Волна, падающая в точку A рефлектора, после отражения распространяется параллельно оси рефлектора. Волна, падающая на рефлектор выше или ниже точки A , после отражения распространяется под некоторым углом к оси рефлектора (см. рис. 6.53б ).

Для рефлектора с углом раскрыва α = 90° длина стороны рефлектора достигает значения 2S . В этом случае точка A находится на расстоянии 1,41S от вершины рефлектора. Если уменьшить угол раскрыва рефлектора с 90° до 60°, то точка A будет отстоять от вершины рефлектора уже на расстояние 1,73S . Поэтому в этом варианте, при котором не меняется длина стороны рефлектора, а только уменьшается угол раскрыва, усиление антенны не изменится. Усиление увеличится, если одновременно уменьшить угол раскрыва и удлинить до значения 3S длину стороны рефлектора.

Уменьшение высоты рефлектора H от 0,6λ до 0,3λ приводит вначале к уменьшению усиления, а потом и к изменению направления излучения главного лепестка диаграммы направленности.

Для того чтобы расширить полосу рабочих частот уголковой антенны, следует использовать широкополосный вибратор и выбирать антенну со следующими размерами S = 0,5 и L = 1,0λ . Обычно эффективная площадь поверхности раскрыва уголковых антенн A эфф = (1...2)λ 2 зависит от угла раскрыва антенны и длины сторон рефлектора.

Анализ уголковой антенны можно провести, пользуясь методом зеркальных изображений, согласно которому стороны рефлектора исключаются из рассмотрения, а их взаимодействие с реальным источником излучения заменяется рядом мнимых источников. На рис. 6.54а , б приведены эквивалентные схемы антенн, имеющих угол раскрыва соответственно 90° и 60° Схема, эквивалентная уголковой антенне с углом раскрыва 90°, имеет один реальный излучатель и три мнимых, причем фаза возбуждения мнимых диполей 2 и 4 отличается на 180° от фазы возбуждения реального диполя, а фаза возбуждения третьего мнимого диполя совпадает с фазой реального диполя. Диполи 2 и 4 отстоят от диполя 1 на расстояние 1,41S , а расстояние между этими диполями вдоль оси антенны составляет S . Результирующая диаграмма направленности четырехэлементной системы, у которой амплитуды токов в элементах одинаковы, а фазы возбуждения определены выше, является диаграммой излучения уголковой антенны.

Результирующая диаграмма направленности шести излучателей, один из которых является реальным излучателем, а пять - мнимыми, определяет диаграмму направленности уголковой антенны, имеющий угол раскрыва 60°.

Из графиков, приведенных на рис. 6.55, следует, что изменение расстояния S приводит к изменению формы диаграммы направленности. Диаграмма направленности в плоскости E уголковой антенны значительно шире, чем в плоскости H , для которой рефлектор играет основную роль.

О влиянии расстояния S на форму диаграммы направленности можно судить по рис. 6.55б , на котором представлены диаграммы в плоскостях E и H для уголковой антенны с углом раскрыва 90°. Изменяя угол раскрыва и расстояние S , можно регулировать усиление антенны. При малых расстояниях S усиление антенны изменяется так, как показано на рис. 6.56а , а при больших - как на рис. 6.56б , в . Значение усиления нормировано относительно усиления полуволнового диполя, размещенного в свободном пространстве. Угол 180° означает, что рефлектор выполнен плоским. Пунктирной линией показаны реальные значения усиления, отличающиеся от теоретических из-за наличия сопротивления потерь R пот = 1 Ом . Из графиков, приведенных на рис. 6.56б , в , следует, что изменение усиления антенны в зависимости от отношения S/λ носит осциллирующий характер: усиление сначала растет с увеличением S/λ , а затем уменьшается, далее вновь растет и т. д.

Входное сопротивление R A зависит от расстояния S и угла раскрыва антенны. Для анализа влияния этих параметров на R A можно воспользоваться графиками, приведенными на рис. 6.57а для малых значений S/λ и рис. 6.57б , в для больших значений S/λ . Анализ графиков показывает, что при больших значениях отношения S/λ входное сопротивление уголковой антенны, излучателем которой является полуволновый диполь, приближается к входному сопротивлению полуволнового диполя, размещенного в свободном пространстве.

В табл. 6.8 сведены основные параметры уголковой антенны, предназначенной для работы в диапазонах 145 и 432 МГц.

Использование: в антенной технике. Сущность изобретения: рефлектор антенны выполнен из обшивок, между которыми размещен заполнитель. На одной из обшивок размещена отражающая поверхность, выполненная из уложенных внахлест отражающих элементов в форме криволинейных или правильных многоугольников. Обшивки могут быть выполнены многослойными, а каждый слой - из элементов в форме криволинейных или правильных многоугольников, слои обшивок расположены симметрично относительно заполнителя. Кроме того, слои на вершине образованы из элементов в форме криволинейных квадратов. 4 з.п. ф-лы, 3 ил.

Изобретение относится к радиотехнике, а именно к конструкциям рефлекторов антенн. Известен также рефлектор антенны, выполненный в виде многослойной конструкции с отражающим слоем из металлизированной ткани, исходным материалом для которой служат синтетические или натуральные волокна, покрытые медью, серебром или никелем. Для формирования отражающей поверхности ткань, предварительно пропитанную связующим, разрезают на фигурные клинья. Для этого методом центрального проектирования с помощью компьютера раскраивают на клинья ткань и, располагая клинья внахлестку, формируют криволинейную отражающую поверхность зеркала. Такой крой препрега отражающей поверхности рефлектора антенны не обеспечивает изотропности этого слоя относительно оси вращения параболоида в силу наличия выделенных направлений клиньев, что ведет к неравномерности механических характеристик и, следовательно, искажению радиотехнических характеристик. При укладке клина неизбежна вытяжка препрега, так как параболоид является неразвертывающейся поверхностью, деформация клина при его наложении на эту поверхность с нарушением угла ячеек сетки, что влияет на структурные свойства рефлектора антенны, такие как модуль упругости, прочность, а также на температурную деформацию рефлектора. При перепадах температур в процессе изготовления рефлектора и его эксплуатации в материале отражающего слоя возникают внутренние напряжения, ведущие к расслаиванию. Явления нарушения однородности заготовок препрега усиливаются с увеличением диаметра рефлектора, а следовательно, с увеличением длины кусков препрега, что способствует образованию складок, морщин и тому подобных неравномерностей. Кроме того, выкладка параболического рефлектора большого диаметра нетехнологична, так как раскрой фиксирует местоположение каждого клина. Целью изобретения является создание рефлектора антенны, преимущественно параболической формы, обладающего высокими радиотехническими характеристиками, повышенной надежностью и жесткостью за счет минимизации внутренних напряжений и поводок в процессе изготовления его и эксплуатации, а также повышение технологичности. Для достижения цели рефлектор антенны, преимущественно параболической фоpмы, выполнен в виде многослойного изделия, включающего ячеистый или пористый заполнитель, расположенный между обшивками, при этом внутренняя обшивка содержит отражающий слой, выложенный с нахлестом из криволинейных или правильных многоугольников, например, в виде криволинейной трапеции или шестиугольных фигур. Слои обшивок также могут быть выложены из криволинейных или правильных многоугольников, например, шестиугольных фигур. Слои внутренней и наружной обшивок рефлектора антенны расположены зеркально относительно ячеистого заполнителя. Слои, расположенные на вершине рефлектора антенны, выполнены из криволинейных квадратов. Рефлектор заявляемой конструкции обеспечивает высокие радиотехнические характеристики антенны за счет того, что слои обшивок выложены из элементов в виде правильных многоугольников, преимущественно пяти- или шестиугольников, при этом слои ориентированы относительно друг друга поворотом на постоянный угол. С учетом сторон и зеркального расположения слоев обшивок относительно ячеистого заполнителя получается равномерная, практически изотропная по механическим свойствам жесткая параболическая поверхность, исключающая отклонения от заданной геометрии в процессе изготовления и эксплуатации рефлектора антенны. Сравнительно короткие стороны криволинейных многоугольников обеспечивает хорошее наложение на параболическую поверхность, увеличивающее механическую прочность конструкции. Возможность унифицировать элементы обеспечивает технологичность изготовления рефлектора антенны, исключает отходы при крое и снижает затраты на его изготовление. На фиг. 1 представлен рефлектор антенны (общий вид); на фиг.2 узел I на фиг.1; на фиг.3 узел II на фиг.2. Рефлектор антенны представляет собой многослойное изделие, включающее внутреннюю обшивку 1, наружную обшивку 2, расположенный между ними сотовый заполнитель 3. Обшивки выполнены многослойными, при этом слои выполнены из криволинейных или правильных многоугольников 4. Внутренняя обшивка имеет отражающий слой 5, представляющий собой два слоя углеродного волокна, уложенные под углом 90 o относительно друг друга. Отражающий слой 5 расположен между внешним 6 и внутренним 7 слоями внутренней обшивки рефлектора антенны, выполненными из стеклоткани. Наружная обшивка 2 выполнена из четырех слоев стеклоткани. Схема выкладки наружной обшивки является зеркальным отражением схемы выкладки внутренней обшивки относительно сотового заполнителя ПСП на основе бумаги финелон и фенольного связующего. Изготовление рефлектора диаметром 2 м для антенны с фокусным расстоянием 82 см, предназначенной для работы в диапазоне 10-12 ГГц на длине волны 2,5-3 см. Изготовление рефлектора антенны включает следующие операции. Изготовление внутренней обшивки. Внутреннюю многослойную обшивку изготавливают последовательной сборкой пакета: сначала на поверхность неметаллической оснастки выкладывают первый слой стеклоткани Т-11, пропитанной термореактивный связующим на основе эпоксидной смолы "Спорт" в направлении "0". Далее выкладывают второй и третий отражающие слои из углеродного волокна ЭЛУР-0,08 и, располагая их относительно друг друга под углом 90 o , а относительно первого слоя под углом 45 o . После чего выкладывают четвертый слой из стеклоткани Т-11, пропитанной связующим "Спорт" под углом 90 o относительно первого слоя. Каждый из четырех слоев выкладывают с перехлестом заготовок, полученным раскроем препрега, в виде криволинейной трапеции. Геометрические размеры криволинейной трапеции определяли экспериментально, высота трапеции составила 30 см, а ширина 40 см. Технологический пакет упаковывают в герметизирующий чехол и проводят вакуумное формование при температуре 130 o и давлении 0,5-0,7 кг/см 2 в течение 2 ч. На изготовленную таким образом обшивку наносят слой клея ВК-51 и укладывают несущий слой из сотового заполнителя ПСП на основе бумаги финелон и фенольного связующего с ячейкой 5 мм и высотой 50 мм. На несущий слой из сотового заполнителя выкладывают внешнюю обшивку рефлектора, состоящую из четырех слоев стеклоткани Т-11, пропитанной термореактивным связующим "Спорт", из предварительно раскроенных заготовок в виде криволинейной трапеции. При этом схема выкладки слоев наружной обшивки является зеркальным отражением схемы выкладки слоев внутренней обшивки рефлектора. Собранный технологический пакет упаковывают в герметизирующий чехол и проводят вакуумное формование также при 130 o и давлении 0,5-0,7 кГ/см 2 в течение 2 ч. Изготовленный таким образом рефлектор антенны соответствовал заданным радиотехническим характеристикам.

Формула изобретения

1. Рефлектор антенны, содержащий отражающую поверхность, выполненную из отражающих элементов, уложенных внахлест на опорную оболочку, отличающийся тем, что опорная оболочка выполнена из обшивок, между которыми размещен пористый или ячеистый заполнитель, а отражающие элементы выполнены в форме криволинейных или правильных многоугольников и уложены на одну из обшивок. 2. Рефлектор по п. 1, отличающийся тем, что каждый отражающий элемент выполнен в форме криволинейной трапеции или шестиугольника. 3. Рефлектор по пп. 1 и 2, отличающийся тем, что обшивки выполнены многослойными, а каждый слой образован из элементов в форме криволинейных или правильных многоугольников. 4. Рефлектор по пп. 1 3, отличающийся тем, что слои обшивок расположены симметрично относительно ячеистого заполнителя. 5. Рефлектор по пп. 1 4, отличающийся тем, что слои на его вершине образованы из элементов в форме криволинейных квадратов.