Светодиодный куб 3х3х3 своими руками. Cветодиодный куб (LED Cube). Изготовление слоев куба

Как работает декоративная скульптура из светодиодов? Можно ли её собрать самостоятельно? Сколько нужно светодиодов и что нужно кроме них? На все эти вопросы вы найдете ответ в этой статье.

Led куб – что нужно для самостоятельной сборки

Если вы увлекаетесь самоделками, любите ковыряться в схемах электроники – попробуйте собрать светодиодный куб своими руками. Для начала нужно определиться с размерами. Поняв принцип работы устройства, вы можете модернизировать схему как с целью увеличения светодиодов, так и с меньшим их количеством.

Светодиодный куб с гранями на 8 диодов

Давайте разберем как это работает на примере куба со стороной в 8 светодиодов. Такой куб может испугать начинающих, но если вы будете внимательным при изучении материалов – вы с лёгкостью освоите его.

Чтобы собрать led cube 8x8x8 вам понадобится:

  • 512 светодиодов (например 5мм);
  • сдвиговые регистры STP16CPS05MTR – 5 шт;
  • микроконтроллер для управления, см. Arduino Uno или любую другую плату;
  • компьютер для программирования системы;

Принцип работы схемы

Маленькие светодиоды типа 5 мм потребляют незначительный ток – 20 мА, но вы собираетесь зажигать их довольно много. Источник питания 12В и 2А прекрасно подойдет для этого.

Подключить все 512 светодиодов индивидуально у вас не выйдет потому, что вряд ли вы найдете микроконтроллер (МК) с таким количеством выводов. Чаще всего встречаются модели в корпусах с количеством ног от 8 до 64. Естественно вы можете найти варианты и с большим количеством ножек.

Как же подключить столько светодиодов? Элементарно! Сдвиговый регистр – микросхема которая может преобразовывать информацию из параллельного вида в последовательный и наоборот – из последовательного в параллельный. Преобразовав последовательный в параллельный вид, вы получите из одной сигнальной ножки 8 и более, в зависимости от разрядности регистра.

Ниже приведена диаграмма иллюстрирующая принцип работы сдвигового регистра.

Когда на последовательный вход Data вы подаете значение бита, а именно ноль или единицу, она по фронту тактового сигнала Clock передается на параллельный выход номер 0, не забывайте, что в цифровой электронике нумерация идёт с нуля).

Если в первый момент времени была единица, а затем в течении трёх тактовых импульсов на входе вы задали нулевой потенциал, в результате этого вы получите такое состояние входов «0001». Вы можете это наблюдать на диаграмме на строках Q0-Q3 – это четыре разряда параллельного выхода.

Как применить эти знания в построении LED куба? Дело в том, что можно применить не совсем обычный сдвиговый регистр, а специализированный драйвер для светодиодных экранов — STP16CPS05MTR. Он работает по такому же принципу.

Как соединять светодиоды?

Разумеется, что использование драйвера не полностью решит проблемы связанную с подключением большого количества светодиодов. Для подключения 512 светодиодов понадобится 32 таких драйвера, а от микроконтроллера еще больше управляющих ножек.

Поэтому мы пойдём другим путём и объединим светодиоды в строки и столбцы, таким образом мы получим двухмерную матрицу. Лед куб же занимает все три оси. Доработав идею объединения светодиодного куба 8x8x8 у которого светодиоды объединены в группы, можно прийти к такому выводу:

Объединить слои светодиодов (этажи) в схемы с общим анодом (катодом), а столбцы в схемы с общим катодом (или анодом, если на этажах объединяли катоды).

Чтобы управлять такой конструкцией нужно 8 x 8 = 16 управляющих пинов на колонки, и по одной на каждый этаж, всего этажей тоже 8. Итого вам нужно 24 управляющих канала.

На колодку input подаются сигнал с трех ножек микроконтроллера.

Чтобы зажечь необходимый светодиод, например, расположенный на первом этаже, в первой строке третий по счету, вам нужно подать минус на столбец номер 3, а плюс на этаж номер 1. Это справедливо если вы собрали этажи с общим анодом, а столбцы – катодом. Если наоборот, соответственно и управляющие напряжения должны быть инвертированы.

Для того, чтобы вам было удобно спаивать куб из светодиодов вам нужно:

Для корректной работы куба из светодиодов нужно собрать его по слоям с общим катодом, а столбцы – анодом. Подключить к выводам Arduino то что на схеме обозначено, как input в такой последовательности:

№ вывода Arduino Название цепи
2 LE
3 SDI
5 CLK

Что делать если у меня нет таких навыков?

Если вы не уверены в своих силах и знаниях электроники, но хотите себе такое украшение для рабочего стола, вы можете купить готовый куб. Для любителей мастерить простенькие электронные поделки, есть отличные варианты проще с гранями 4x4x4.


Куб с размером грани 4 диода

Готовые наборы для сборки можно приобрести в магазинах с радиодеталями, а также их огромный выбор на aliexpress.

Сборка такого куба разовьет у начинающего радиолюбителя навыки пайки, точность, правильность и качество соединений. Навыки работы с микроконтроллерами пригодятся для дальнейших проектов, а с помощью Arduino вы можете научится программировать простые игрушки, а также средства автоматизации для быта и производства.

К сожалению, из-за особенностей языка программирования Arduino – sketch есть некие ограничения в плане быстродействия, но поверьте, что когда вы упретесь в потолок возможностей этой платформы, скорее всего освоение работы с «чистыми» МК у вас не вызовет существенных трудностей.

Answer

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry"s standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book. It has survived not only five http://jquery2dotnet.com/ centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Светодиодный куб 4х4х4 на Arduino



В этой статье описано создание светодиодного куба 4х4х4 на Arduino.

Список элементов
1. 64 Светодиода
2. 16 Резисторов
3. 1 Arduino (я использовал Arduino Pro Mini atmega328 5V 16M (заказал на ebay))

Выбор светодиодов
Перед сборкой куба я рекомендую проверить каждый светодиод. Просто подайте на него +5В через резистор. Если куб будет изготовлен с неисправным светодиодом, поменять его бывает затруднительно. У большинства светодиодов положительный вывод (анод) более длинный, чем отрицательный (катод). Также можно посмотреть светодиод на свет, при этом будут видны два кусочка метала. Меньший из них это положительный вывод (анод).

Расчет резистора
Номинал резистора будет зависеть от типа ваших светодиодов. Используя закон Ома U = IR, мы можем рассчитать резистор. Мы должны знать максимальный рабочий ток и падение напряжения на светодиоде. У моих светодиодов падение напряжения 3.4В и максимальный ток 20мА. На выводах Arduino 5В и мы получаем (5-3.4) / 0.020 = 80. У нас получилось значение 80 Ом, я использовал резисторы 100 Ом. Рассчитать сопротивление для светодиода вы можете на он-лайн светодиодном калькуляторе .

Основной принцип куба

Куб 4x4x4 будет содержать 64 светодиода собранных в 16 столбцов и 4 горизонтальных слоя. Аноды(+) всех светодиодов каждого столбца соединены вместе. Слои состоят из соединённых катодов светодиодов. Для управления светодиодами надо подать 5В на необходимый столбец и GND на необходимый горизонтальный слой. Для предотвращения превышения тока можно запускать только один слой и столбец одновременно. Для зажигания нескольких светодиодов или всего куба сразу мы будем использовать динамическую индикацию, т.е. переключать их с частотой больше воспринимаемой человеком. Например, если надо зажечь третий светодиод на четвертом столбце, необходимо подать на столбец HIGH (5В) и на слой LOW (0В).

Изготовление шаблона
Для сборки красивого симметричного куба нам потребуется шаблон. Это кусок доски с просверленными в нем на равном расстоянии отверстиями(я использовал кусок плотного картона ). Расстояние между отверстиями определяется длиной согнутого катода светодиода. Длина согнутого катода моего светодиода оставляет около 25мм, поэтому я взял расстояние между светодиодами примерно 23мм. Размер отверстий необходимо подобрать так, чтобы светодиод сидел в них не слишком туго и не слишком свободно.

Порядок сборки светодиодного куба 4х4х4 (Фотографии взяты с сайта masterkit.ru)

1. В первую очередь необходимо подготовить выводы светодиодов. Смотрите рис. 1.
Шаг 1. Короткий отгибаем на 90 градусов.
Шаг 2. С помощью пинцета формуем короткий так, чтобы на 3 мм. увеличился шаг между выводами.
Шаг 3. Теперь, в сторону отгибаем длинный.

2. Установите в отформованные светодиоды в отверстия платы. Сначала первый ряд. Рис. 2. Соедините пайкой длинные выводы. Рис.3.

3. Длинные выводы от крайних светодиодов каждого ряда выступают за край платы. Аккуратно подгибайте их вдоль платы и соединяйте пайкой между собой. Рис.4

В этой статье описано создание светодиодного куба 4х4х4 на Arduino. Arduino (Freeduino) имеет 20 контактов (вместе с контактами АЦП), поэтому можно обойтись без регистров сдвига.

Список элементов

1. 64 Светодиода
2. 16 Резисторов
3. 1 Arduino (я использовал Freeduino)
4. 1 Макетная плата
5. Паяльник
6. Дрель
7. Кусок дерева

Выбор светодиодов

Светодиоды бывают разной формы, размера и цвета. Нам необходимы светодиоды рассеянного свечения. С ними куб будет красиво смотреться со всех сторон, т.к. светодиоды рассеянного свечения светят во все стороны, а нерассеянного в основном вверх. Я решил использовать 5мм супер яркие светодиоды. 3 мм светодиоды хорошо смотрятся в кубах большего размера, а для это малы, но если хотите можете использовать их. Я купил светодиоды нерассеянного свечения, и мне пришлось точить каждый на наждачной бумаге.

Перед сборкой куба я рекомендую проверить каждый светодиод. Просто подайте на него +5В через резистор. Если куб будет изготовлен с неисправным светодиодом, поменять его бывает затруднительно. У большинства светодиодов положительный вывод (анод) более длинный, чем отрицательный (катод). Также можно посмотреть светодиод на свет, при этом будут видны два кусочка метала. Меньший из них это положительный вывод (анод). Более подробно о светодиодах читайте .

Расчет резистора

Номинал резистора будет зависеть от типа ваших светодиодов. Используя закон Ома U = IR, мы можем рассчитать резистор. Мы должны знать максимальный рабочий ток и падение напряжения на светодиоде. У моих светодиодов падение напряжения 3.4В и максимальный ток 20мА. На выводах Arduino 5В и мы получаем (5-3.4) / 0.020 = 80. У нас получилось значение 80Ом. Чтобы продлить срок службы светодиода, я использовал резисторы 100 Ом. Рассчитать сопротивление для светодиода вы можете на .

Основной принцип куба

Куб 4x4x4 будет содержать 64 светодиода собранных в 16 столбцов и 4 горизонтальных слоя. Аноды(+) всех светодиодов каждого столбца соединены вместе. Слои состоят из соединённых катодов светодиодов. Для управления светодиодами надо подать 5В на необходимый столбец и GND на необходимый горизонтальный слой. Для предотвращения превышения тока можно запускать только один слой и столбец одновременно. Для зажигания нескольких светодиодов или всего куба сразу мы будем использовать динамическую индикацию, т.е. переключать их с частотой больше воспринимаемой человеком. Например, если надо зажечь третий светодиод на четвертом столбце, необходимо подать на столбец HIGH (5В) и на слой LOW (0В).

Изготовление шаблона

Для сборки красивого симметричного куба нам потребуется шаблон. Это кусок доски с просверленными в нем на равном расстоянии отверстиями. Для создания шаблона нам понадобится кусок доски, сверла и измерительные инструменты. Расстояние между отверстиями определяется длиной согнутого катода светодиода. Длина согнутого катода моего светодиода оставляет около 25мм, поэтому я взял расстояние между светодиодами примерно 23мм. Размер отверстий необходимо подобрать так, чтобы светодиод сидел в них не слишком туго и не слишком свободно.

Изготовление слоев куба

Имея шаблон мы можем начать собирать слои. Старайтесь не перегреть светодиоды, т.к. это может привести к выходу их из строя.

Начните с углового светодиода и направьте его согнутый катод за пределы куба. Затем разместите и припаяйте следующий светодиод в линии с торчащим выводом. Затем припаяйте другую линию. Сделайте таким образом 4 слоя.

Когда у нас есть все слои, можно приступить к сборке куба. Положите один из слоев в шаблон, и немного поотгибайте верхние концы торчащих выводов. Припаяйте к ним следующий слой светодиодов. Для соблюдения расстояний между слоями я использовал ластик уменьшенный до нужных размеров. Спаяйте таким образом все 4 слоя между собой.

Основа

Для основы куба я использовал макетную плату. Также на ней были размещены резисторы. Эта часть проекта выглядит не очень хорошо, т.к. я торопился. Вы можете сделать её намного лучше.

Корпус

Мне надоели постоянно болтающиеся провода, и я решил сделать корпус. Сам корпус я сделал из ДСП, а колпак на куб из акрила. Я покрасил печатную плату и ДСП для улучшения внешнего вида. У меня не было инструментов для нарезки акрила, поэтому я решил использовать самодельный резак. При помощи него по акрилу проводится несколько линий, по которым он ломается.

Прошивка

Создание прошивки может занять некоторое время, особенно если вы новичок, т.к. хороших книг по программированию достаточно мало. У меня было мало времени, поэтому я делал не очень сложную прошивку. Однако мне удалось сделать несколько программ, и глядя на них вам будет легче во всем разобраться. Моя прошивка прилагается ниже.

В проекте предложена конструкция светодиодного куба (LED cube) 4x4x4 стоимостью около 15 долларов.

В кубе использовано 64 зеленых светодиода, которые формируют 4 слоя и 16 колонок. Управление кубом реализуется на базе Arduino. Приведен пример программы для Arduino Uno, в которой реализовано управление каждым отдельным светодиодом из всего массива.

Необходимые детали для проекта

  • 64 светодиода
  • 4 резистора на 100 Ом
  • Коннекторы для распайки
  • Проводники
  • Макетная плата для распайки
  • Коробка
  • Источник питания на 9 В
  • Arduino Uno

Инструменты, которые могут вам пригодиться, приведены на фото ниже.

Формируем основу светодиодного куба

Можете воспользоваться эскизом, который приведен . Распечатайте его и наклейте на картонную коробку. При печати проверьте, чтобы был выставлен фактический размер и горизонтальная ориентация. Карандашом сделайте отверстия в узловых точках. Проверьте, хорошо ли садятся светодиоды в подготовленные отверстия.

Собираем светодиодный куб

Возьмите 64 светодиода и проверьте их работоспособность, подключив каждый к пальчиковой батарейке. Это, конечно, скучная процедура, но она необходима. Иначе из-за одного нерабочего светодиода впоследствии может быть куча проблем. Установите 16 светодиодов в отверстия в соответствии со стрелками на распечатке. Красные стрелки соответствуют плюсу (анод), синие - минусу (катод). Все аноды соедините между собой. После этого переверните коробку и вытолкните светодиоды. Выталкивайте аккуратно, чтобы не повредить собранный слой. Все. Первый слой готов. Аналогичным образом формируем еще три слоя. После соединяем четыре получившихся слоя с помощью свободных катодов. Советую соединять контакты начиная с центра и перемещаясь к периферии. Светодиодный куб начинает принимать необходимые очертания!

Установка светодиодного куба

Сделайте разметку на макетной плате с помощью маркера. Учтите, что размеченный прямоугольник должен быть немного меньше коробки, на которой будет установлен ваш куб. После разметки сделайте небольшой паз вдоль линии будущей грани и аккуратно отломайте ребра макетной платы. Сделайте 20 отверстий на верхней части вашей коробки для куба. Можно разметить места для сверления по соответсвующим отверстиям макетной платы.

Подключаем светодиодный куб

Сначала разделите вашу рейку коннекторов на три части таким образом, чтобы они подошли к цифровым и аналоговым пинам Arduino Uno. Зачистите и установите на вашей маетной плате в коробке 16 проводов для цифровых входов (рядов). 4 провода от аналоговых входов подключите с использованием резисторов на 100 Ом. Теперь переходите к подключению концов проводов к трем рейкам коннекторов. Подключение реализовано таким образом, что есть возможность управлять светодиодами вдоль трех осей. Колонки соответсвуют осям X и Y. Плюс к этому, благодаря четырем слоям мы получаем координату Z. Если вы посмотрите вниз с угла светодиодного куба, первый квадрант будет соответствовать обозначению (1, 1). Таким образом, каждый светодиод может быть инициализирован по подобной же методике. Давайте рассмотрим пример. Посмотрите на рисунок выше и найдите светодиод A(1,4). "A" означает, что это один и первых слоев, а "(1,4)" соответсвтует координатам X=1, Y=4.

Схема подключения

Ряды/колонки

Слои

[Пины для слоев]

Подключаем источник питания для Arduino

Для питания платы можно использовать отдельный адаптер на 9 вольт, 1 ампер. Можно использовать переходник для батарейки типа крона и питать от нее. В любом случае, вам понадобится сделать еще одно отверстие для провода питания. Когда будете делать отверстие, предусмотрите его размер немного большим, чем сам коннектор.

В общем то все, что вам после этого останется - загрузить скетч на Arduino и наслаждаться результатом:

Ваш куб готов!

Видео собранного светодиодного куба 4x4x4

Представляю проект 3D светодиодного куба (LED Cube) с матрицей 4х4х4.

64 светодиода образуют куб со сторонами 4х4х4, который управляется микроконтроллером Atmel Atmega16. Каждый имеет свой виртуальный адрес и может управляться с микроконтроллера индивидуально, позволяя таким образом добиваться потрясающих эффектов.

Видео работы куба смотрите ниже:

Итак, начнем...

Шаг 1. Что нам понадобится?

Первое, это терпение спаять все 64 светодиода вместе;)

Список радиодеталей:
Макетная плата (ну или вытравленная печатная)
Микроконтроллер Atmel AVR Atmega16
Программатор Atmega16
64 светодиода
2 светодиода состояния. Я использовал красный и зеленый. (опционально)
Микросхема Max232 rs-232 или подобная
16х резисторов для светодиодов. (100-400 Ом)
2x резистора по 470 Ом для светодиодов состояния
1x резистор 10кОм
4x резистор 2.2кОм
4x NPN транзистора BC338 (отеч. аналоги КТ645, КТ646, КТ660Б) или другой выдерживающий ток до 250 мА
1x 10мкФ конденсатор
1x 1000мкФ конденсатор
6x 0.1мкФ керамический конденсатор
2x 22пФ керамический конденсатор
1x кварц 14.7456 MHz
2x кнопки
Выключатель питания
Разъем питания 12В
Разъем питания 5В

Шаг 2. Мультиплексирование

Как управлять 64 светодиодами, если нет столько выводов управления? Мультиплексирование!

Если к аноду каждого светодиода присоединить вывод управления, то это будет непрактично, да и выглядеть будет не очень красиво. Один из способов побороть эту проблему - это разделить куб на 4 слоя, в каждом из которых будет 4х4=16 светодиодов.

У светодиодов в вертикальных колонках общий анод (+)
У светодиодов в горизонтальных плоскостях общий катод (-)

Теперь, если нужно засветить светодиод в верхнем левом углу сзади (0,0,3), необходимо подать GND(-) к верхнему слою и Vcc(+) к колонке в левом углу куба.

Если нужно засветить один светодиод или полностью весь слой, то это работает отлично...

Однако, если нужно засветить нижний правый угол спереди (3,3,0), возникают проблемы. Когда я подал GND на нижний слой и Vcc к передней левой колонке, я также засветил верхний правый светодиод спереди (3,3,3) и нижний левый светодиод сзади (0,0,0). Эта проблему казалось бы не побороть, без использования 64 индивидуальных линий управления светодиодами.

Но можно одновременно засвечивать только один слой и делать это очень быстро, чтобы глаз не успел разглядеть время переключения между слоями. Этот эффект называется

Каждый слой - это изображение из 4х4=16 точек (светодиодов) и если мы будем быстро переключать слои, то мы получим 4х4х4 3D куб!

Шаг 3. Конструирование шаблона для куба

Спаять обьемный куб из 64 светодиодов без каких-либо приспособлений будет сложно. Поэтому мы облегчим нашу задачу воспользовавшись инструментом и приспособлениями:

Для начала, изготовим шаблон 4х4 из дерева.

Т.к. я не хотел сильно замарачиваться с решеткой куба, то решил по возможности использовать выводы светодиодов как основу решетки куба. Дистанция линий на сетке шаблона была выбрана исходя из длины ножек светодиодов. У меня получилось 25мм. Т.о. при такой сетке, нет необходимости что-либо наращивать или обрезать.

Итак, последовательность действий:
- найти и вырезать кусок фанеры
- нарисовать на ней решетку 4х4
- сделать углубления на всех пересечениях шилом или другим инструментом
- найти сверло, чтобы светодиод уверенно стоял в отверстии, и в то же время в последствии вы его могли легко вытащить
- просверлить 16 отверстий в шаблоне

Шаблон для куба готов!

Шаг 4. Конструирование светодиодных слоев

Итак, нам необходимо спаять 4 слоя светодиодов по 16 в каждом, а затем все 4 слоя спаять в один обьемный куб.

Процесс изготовления одного слоя (4х4) из светодиодов следующий:
- вставьте светодиоды в отверстия по 2-м дальним сторонам от вас и спаяйте их между собой
- вставьте светодиоды для следующего ряда, и также их спаяйте
- заполните так всю матрицу из 16 шт
- спереди, где нет соединения, добавьте связующие пересечения
- повторить процедуру 3 раза для оставшихся слоев.

Шаг 5. Конструирование куба

Все четыре слоя готовы, осталось их спаять вместе в один куб.

Положите первый слой на шаблон вниз головой. Это будет верхний слой куба.

Поместите второй слой на первый и очень точно совместите их. Также соблюдите расстояние между слоями 25мм, чтобы у вас получился идеальный куб. Это расстояние между катодами.
После того, как все выставили (воспользуйтесь приспособлением "третья рука"), припаяйте угловой анод первого слоя к угловому аноду второго слоя. И так все 4 угла.

Еще раз проверьте, чтобы все слои были выравнены относительно друг друга во всех измерениях. Если это не так, то подогните или перепаяйте. После этого, спаяйте 12 оставшихся светодиодов.

Повторите процедуру для оставшихся 2-х слоев.

Шаг 6. Подбор токоограничивающих резисторов

Ток микроконтроллера AVR в сумме не может превышать 200 мА. Т.о. 200/16 дает нам 12 мА на один светодиод.

Я использовал резисторы номиналом 220 Ом. Получилось как раз 12 мА на один светодиод.

Шаг 7. Схемотехника

Схема контроллера для управления кубом, показана на рисунке выше.

RS-232 опционален и может быть опущен (микросхема IC2).

Шаг 8. Присоединение МК к светодиодному кубу

Обьяснять я думаю не надо, все показано на картинках.

Шаг 9. Программа, компиляция и прошивка МК

Наш куб готов, осталась только программная часть.
Вы можете использовать мою программу, написать сами ее, либо дополнить мою программу дополнительными эффектами.

Если вы захотите использовать ATMega32 вместо ATMega16, то необходимо будет поменять настройки в makefile и перекомпилировать.

Для прошивки МК я использовал и программатор .

Итак, сперва нужно соединение программатора с микроконтроллером. Подсоедините программатор к плате куба и ПК.
Команда: avrdude -c usbtiny -p m16

Наш куб должен будет перезапуститься и стартовать. МК запуститься на очень низкой частоте 1 МГц используя встроенный тактовый генератор. Некоторые LED работать не будут, потому что порты GPIO заняты под JTAG.

Чтобы подключить внешний тактовый генератор и выключить JTAG, нужно перезаписать фьюзы:
введите: avrdude -c usbtiny -p m16 -U lfuse:w:0xef:m
затем: avrdude -c usbtiny -p m16 -U hfuse:w:0xc9:m

Все, после этого, наш светодиодный куб должен запуститься в нормальном режиме!

Ниже вы можете скачать прошивку, исходники и печатную плату в формате LAY

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК AVR 8-бит

ATmega16

1 В блокнот
IC2 ИС RS-232 интерфейса

MAX232

1 В блокнот
IC3 Линейный регулятор

LM7805CT

1 7805T В блокнот
Q2-Q5 Биполярный транзистор

BC338

4 КТ645, КТ646, КТ660Б В блокнот
LED1, LED2 Светодиод

АЛ307В

1 В блокнот
Светодиод

АЛ307Б

1 В блокнот
Светодиод 64 Куб В блокнот
C1-C5 Конденсатор 0.1 мкФ 6 В блокнот
C9 10 мкФ 1 В блокнот
C10 Электролитический конденсатор 1000 мкФ 1 В блокнот
Конденсатор 22 пФ 2 Керамика В блокнот
R1-R16 Резистор 100-400 Ом 16 12 мА на один светодиод В блокнот
R17 Резистор

10 кОм

1 В блокнот
R18-R21 Резистор