Цифровая паяльная станция своими руками v 2.0. Цифровая паяльная станция своими руками (ATmega8, C). Паяльная станция с феном на atmega8 своими руками. Запуск паяльной станции

Паяльная станция, для паяльника, собрана по схеме Михи с радиокота. Переключение паяльника, фена и турбины осуществляется переключателями ПК, переключаются выходы усилителей термопар, и управление паяльником или феном, при выключении фена турбина продолжает работать. Управление феном осуществляется тиристором, т.к. фен на 110в вместо R1 диод катодом к в.6. Паяльник ZD-416 24в, 60 вт, фен с турбиной от ПС LUKEY 702


Подробности, прошивка: http://radiokot.ru/forum

Универсальная печь радиолюбителя

Печка для пайки SMD деталей, имеет 4 программируемых режима.

Схема блока управления


Блок питания и управление нагревателем


Собрал данную конструкцию для управления ИК паяльной станцией. Может когда нибудь и печкой управлять буду. Была проблема с запуском генератора, поставил конденсаторы 22 пф с выводов 7, 8 на массу, и стала нормально запускаться. Все режимы нормально отрабатывает, нагружал 250 вт керамическим нагревателем.

Подробнее: http://radiokot.ru/lab/hardwork/11/

Пока печки нет, сделал вот такой нижний подогрев, для небольших плат:

Нагреватель 250 вт, диаметр 12 см, прислали из Англии, покупал на EBAY.


Цифровая паяльная станция на PIC16F88x/PIC16F87x(a)

Паяльная станция с двумя одновременно действующими паяльником и феном. Можно использовать разные МК (PIC16F886/PIC16F887, PIC16F876/PIC16F877, PIC16F876a/PIC16F877a). Применен дисплей от Nokia 1100 (1110). Обороты турбины фена регулируются электронно, так же задействован встроенный в фен геркон. В авторском варианте применен импульсный блок питания, я применил трансформаторный БП. Всем мне нравится эта станция, но с моим паяльником: 60вт, 24в, с керамическим нагревателем, большое забегание и колебание температуры. При этом паяльники меньшей мощности, с нихромовым нагревателем имеют меньшие колебания. При этом мой паяльник, с описаной выше паяльной станцией от Михи-Псков, его с прошивкой 5гр с точкой, поддерживает температуру с точность до градуса. Так что нужнен хороший алгоритм нагрева и поддержания температуры. В качестве эксперемента сделал ШИМ регулятор на таймере, управляющее напряжение подал с выхода усилителя термопары, отключение, включение от микроконтроллера, Колебание температуры сразу уменьшилось до нескольких градусов, это подтверждает что нужен правильный алгоритм управления. Внешний ШИМ это конечно порнография при наличии микроконтроллера, но хорошую прошивку пока не написали. Заказал другой паяльник если с ним не будет хорошей стабилизации, продолжу свои эксперементы с внешним ШИМ управлением, а может хорошая прошивка появится. Станцию собрал на 4 платах, соединяются между собой на разъемах.

Схема цифровой части устройсква представлена на рисунке, для наглядности показаны два МК: IC1 - PIC16F887, IC1(*) - PIC16F876. Другие МК подключаются аналогично, на соответствующие порты.

Для изменения контрасности нужно найти 67 байт в ЕЕПРОМ, его значение "0х80" , для начала можно поставить "0х90". Значения должны быть от "0х80" до "0х9F".

По поводу дисплея 1110i (текст отображается зеркально), если не китай, а оригинал,открываем ЕЕПРОМ, ищем 75 байт, меняем его с A0 на A1.

Подробности, прошивка: http://radiokot.ru/lab/controller/55/

Получил паяльник Hakko907 24в, 50вт, с керамическим нагревателем 3 ома, и терморезистором 53 ом. Пришлось доработать усилитель под терморезистор. Прошивку залил от 24.11.11. Стабильность температуры улучшилась, при заданной 240 гр держит в пределах 235-241. Усилитель собрал по схеме



Двухканальная ПС на двух ATMEGA8.

Первый вариант Михиной паяльной станции был одноканальный, решил собрать двухканальную
по схеме 4. (см. ФАК по Михиной ПС на Радиокоте.) Оновременно можно пользоваться паяльником и феном.
Паяльник Hakko 907 с терморезистором, фен с турбиной от ПС LUKEY 702.
Станцию сделал блочную: Плата микроконтроллера с индикаторами и кнопками, плата усилителей терморезистора
и термопары, плата управления феном и блок выпрямителей, стабилизаторов и трансформатор.
Для управления, из кнопок сделаны самодельные джойстики, ими удобнее управлять чем просто кнопками. Трансформатор от принтера, паяльник нормально тянет трансформатор не греется. Подключить к ней паяльник ZD-416 не удалось, большое забегание температуры, хотя он нормально работает на Михиной ПС. Схемное решение, прошивка все тоже, а работать не хочет. Видно благодаря господу Богу и стечению обстоятельств он заработал без проблем на моей первой ПС. Смоделировать эти обстоятельства не удалось, понижал напряжение питания паяльника, перепробывал разные варианты усилителей термопары, делал как у Михи питание ИОН с резистивного делителя, конденсаторы, дроссели ставил.

Схема 4.




Подробности, прошивка: http://radiokot.ru/forum


Двухканальная паяльная станция с энкодером


Паяльная станция двухканальная, с одновременно работающими паяльником и феном, разработана Pashap3 (подробности смотри на Радиокоте) и выполнена на ATMEGA16 с индикатором 1602 и энкодером. ИИП для паяльной станции выполнил на TOP250.

Собранная без ошибок и из исправных деталей ПС работает отлично, держит температуру +- 1 гр., спасибо автору!

Схема ПС


Усилители могут быть выпонены по одной из схем или им подобных, я собрал на LM358.

Усилитель для термопары

Термокомпенсация для термопары

Усилитель для терморезистора паяльника


ИИП выполнен на основе схемы


Внутренности станции



Настройка ПС:
1. Калибровку производим первый раз с отключёнными нагревателями, выставляем температуру паяльника и фена,
отображаемую на дисплее, равную или немного выше комнатной;
2. Подключаем нагреватели, повторно включаем пс с нажатой кнопкой принудительного включения фена и входим в
режим ограничения максимальной мощности фена, температура программно задана 200 гр и обороты мотора фена 50%,
поворотом ручки энкодера увеличиваем или уменьшаем максимальную мощность нагревателя фена,
определить при каком минимальном возможном значении температура фена достигнет и будет удерживать 200гр,
в этом же меню можно произвести более точную калибровку,
хотя лучше калибровать на температуре 300-350 результат будет более точным;
3. Нажимаем кнопку энкодера и переходим в режим ограничения максимальной мощности паяльника (тоже что и фен);
4. Нажимаем кнопку энкодера переход в основное меню: по умолчанию паяльник выключен, что соответствует
надпись "SOLD OFF" включаем паяльник кнопкой (температура сохраняется от последнего использования)
поворотом ручки энкодера изменяем нужную температуру (в зависимость от темпа поворота ручки, температура меняться
на 1 или 10гр) по достижению заданной температуры бузер подаст короткий "пик";
5. Нажимаем кнопку энкодера переход в меню таймера сна, выставляем нужное время в минутах max до 59, нажимаем кнопку
энкодера и возвращаемся в меню паяльника;
6. Снимаем фен с подставки или нажатие кнопки принудительного включения фена переходим в меню температуры фена
(если паяльник включён то продолжает поддерживать заданную. температуру)
поворотом ручки энкодера изменям нужную температуру (в зависимость от темпа поворота ручки, температура меняться
на 1 или 10гр) по достижению заданной температуры бузер подаст короткий "пик",
нажимаем кнопку энкодера переход в меню установки оборотов фена от 30 до 100% повторное нажатие возвращает в
предыдущее меню
, в обычном режиме при укладке на подставку мотор фена будет на максимальных оборотах пока температура фена
не спадет ниже 50 гр.;
7. Установленная температура отображается первые 2 сек после последнего поворота энкодере остальное время реальная;
8. За 30,20,10,3,2,1 секунд до окончания таймера сна подается короткий одинарный "пик" и переход в режим "SLEEP"
нагреватель паяльника и фена отключаются, мотор фена будет на максимальных оборотах
пока температура фена не спадёт ниже 50 гр., при повороте ручки энкодера станция просыпается;
9. Выключение пс тумблером - нагреватель паяльника и фена отключаются, мотор фена будет на максимальных оборотах
пс продолжает работать пока температура фена не спадет ниже 50 гр.

Прикладываю свои печатки.


Паяльная станция на жалах Т12

Монолитные жала Т12 стали более доступные по цене решил сделать себе на них ПС.

На Форуме "Радиокота" взяты схема и прошивка, там можно посмотреть обсуждение и новые прошивки.

Схема


Fuse

Схема блока питания аналогична предыдущей ПС. БП выдает 24в и 5в поэтому преобразователь на LM2671 не делал.

Инструкцию по настройке, прошивку и мою плату смотри в приложении.

Давно хотел купить станцию, но из-за финансовых проблем не представилась возможность и чуть подумав решил - а нельзя ли ее сделать своими руками?

Немного порылся в сети и нашел такой ролик https://www.youtube.com/watch?v=wzGbTwlyZxo . Станция как раз то, что мне нужно - управление микроконтроллером, вывод данных на жк дисплей 16х2, на котором отображается.

Верхняя строка - заданная температура паяльника и действующая температура на нем, данные обновляются несколько раз в секунду (0-480гр)

Нижняя строка - заданная температура фена, действующая температура на нем (0-480гр), а также скорость вращения встроенного в фен вентилятора (0-99)

Плата и схема

{youtube}7tpzgnl6GCs{/youtube}

Несколько советов для тех, кому лень смотреть ролики (хотя в них я все довольно подробно пояснил)

Размеры печатной платы уже установлены, зеркалить тоже не нужно. Клеммы, через которые органы управления стыкуются с платой желательно заменить, т.е вместо клемм использовать обычный способ - взять провода и запаять в соответствующие отверстия на плате.

Во время травления ОБЯЗАТЕЛЬНО сверить участки платы с шаблоном, поскольку в некоторых местах выводы SMD компонентов могут образовать КЗ, на фото все это прекрасно видно

МК типа ATMEGA328 - тот же микроконтроллер, которых на платках программатора с набором arduino uno, в китае стоит копейки, но с мк вам будет нужен либо самодельный программатор, либо родной arduino uno, а также кварцевый резонатор на 16МГц.

МК полностью отвечает за управление и вывод данных на ЖК дисплей. Управление станцией довольно простое - 3 переменных резистора на 10кОм (самые обычные, моно - 0,25 или 0,5 ватт) первых отвечает за температуру паяльника, второй - вена, третий увеличивает или уменьшает обороты встроенного в фен кулера.

Паяльник управляется мощным полевым транзистором, через который будет протекать ток в до 2-х Ампер, следовательно на нем будет нагрев, будет также нагреваться и симистор - его вместе с транзистором и стабилизатором на 12 Вольт проводами вывел на общий теплоотвод, дополнительно изолировал корпуса этих компонентов от радиатора.

Светодиоды обязательно взять 3мм с небольшим потреблением (20мА) из за использования более мощных светодиодов 5мм (70мА) у меня не работал фен, точнее не шел нагрев. Причина в том, что светодиод на плате и светодиод, который встроен в опторазвязку (он и собственно управляет всем узлом нагрева фена) подключены последовательно и попросту не хватало питания, чтобы светодиод в опторазвязке засвечивался.

Паяльник

Сам взял паяльник Ya Xun для станций такого типа 40 ватт с долговечным жалом. Штекер имеет 5 пинов (контактных отверстий), распиновка штекера ниже

Учитывайте, что на фото распиновка штекера, который на самом паяльнике,

Паяльник имеет встроенную термопару, данные из которого принимаются и расшифруются уже самой станцией. ОБЯЗАТЕЛЬНО нужен паяльник с термопарой, а не с термистором в качестве датчика температуры.

Термопара имеет полярность, при неверном подключении термопары паяльник после включении наберет максимальную температуру и станет неуправляемым.

Фен

В принципе мощность может быть от 350 до 700 ватт, советую не более 400 ватт,

Того сполна хватит для любых нужд. Фен тоже со встроенной термопарой в качестве температурного датчика. Фен должен быть со встроенным кулером. Имеет гнездо 8 пин, распиновка гнезда на фене представлена ниже.

Внутри фена имеется сам нагреватель на 220 Вольт, термопара, вентилятор и геркон, последний сразу можно выкинуть, в этом проекте он не нужен.

Нагреватель не имеет полярности, а термопара и кулер - имеют, так, что соблюдайте полярность подключения, в противном случае мотор не будет крутиться, а нагреватель наберет максимальную температуру и станет неуправляемым.

Блок питания

Любой (желательно стабилизированный адаптер) 24 Вольт минимум 2 Ампер, совету- 4-5 Ампер. Отлично подойдут универсальные зарядники для ноутбуков, в которых есть возможность подстройки выходного напряжение 12 до 24 Вольт, защита от коротких замыканий и стабилизированных выход - а стоит копейки, сам выбрал именно такой.

Можно также использовать маломощный блок питания для светодиодных лент 24 Вольт, есть с током от 1 Ампер.

Можно также слегка доработать электронный трансформатор (как самый бюджетный вариант) и внедрить в схему, более детально о блоках питания я пояснил в конце видеоролика (часть 1)

Можно также использовать трансформаторный блок питания - можно и не стабилизированный, но повторюсь - стабилизацию иметь желательно.

Монтаж и корпус

Корпус от китайской магнитолы, к ней отлично подошел дисплейчик 16х2, все органы управления установлены на отдельный пластиковый лист и стыкованы к нижней части магнитолы.

Основные силовые компоненты укреплены на теплоотвод, через дополнительные изоляционные прокладки и пластиковые шайбы. Теплоотвод взат от нерабочего бесперебойника.

Он нагревается, но только после долгой работы феном на большой мощности, но все это терпимо, к стати - на плате предусмотрен дополнительный выход 12 Вольт для подключения купера, так, что можно и отдувать радиатор если в этом есть нужда.

{youtube} zbpVYnn3fCE{/youtube}

Настройка

В принципе для настройки нужен либо термометр либо тестер с термопарой и возможностью измерения температуры.

Для начала нужно выставить на паяльнике некоторую температуру (к примеру 400гр) дальше прижать термопару к жалу паяльника, чтобы понять реальную температуру на жале, ну а дальше просто с помощью подстроечного резистора на плате (медленное вращение) добиваемся того, чтобы сравнить реальную температуру на паяльнике (которая выводится на дисплей) с той, что показывает термометр.

То же самое нужно проделать с феном, только термометр нужно поставить под струю горячего воздуха.

Очень совету- подстроечные резисторы взять многооборотные для удобной и наиточной настройки.

К стати - третий подстроечнк на плате отвечает за контраст дисплея.

Минусы

Что является одним из самых важных инструментов в наборе инженера, работа которого связана с электроникой. Это то, что вы, вероятно, любите и ненавидите, - паяльник. Вам необязательно быть инженером, чтобы он вам вдруг понадобился: достаточно быть просто умельцем, которые ремонтирует что-либо у себя дома.

Для базовых применений хорошо справляется и обычный паяльник, который вы включаете в розетку; но для более деликатной работы, такой как ремонт и сборка электронных схем, вам понадобится паяльная станция. Регулирование температуры имеет решающее значение, так как не сжигает компоненты, особенно микросхемы. Кроме того, вам также может потребоваться, чтобы она была достаточно мощной, чтобы поддерживать определенную температуру, когда вы будете что-то припаивать к большому земляному полигону.

В данной статье мы рассмотрим, как можно собрать собственную паяльную станцию.

Разработка

Когда я разрабатывал эту паяльную станцию, для меня были важны несколько ключевых свойств:

  • переносимость - это достигается за счет использования импульсного источника питания, вместо обычного трансформатора и выпрямительного моста;
  • простой дизайн - мне не нужны LCD дисплеи, лишние светодиоды и кнопки. Мне нужен был просто светодиодный семисегментный индикатор, чтобы показывать установленную и текущую температуру. Мне также нужна была простая ручка для выбора температуры (потенциометр) без потенциометра для точной подстройки, так как это легко сделать с помощью программного обеспечения;
  • универсальность - я использовал стандартную 5-контактную штепсельную вилку (какой-то тип DIN), чтобы она была совместима с паяльниками Hakko и их аналогами.

Как это работает

Прежде всего, давайте поговорим о ПИД (пропорционально-интегрально-дифференцирующих, PID) регуляторах. Чтобы прояснить всё сразу, давайте рассмотрим наш частный случай с паяльной станцией. Система постоянно отслеживает ошибку, которая является разницей между заданной точкой (в нашем случае, необходимой нам температурой) и нашей текущей температурой. Он подстраивает выход микроконтроллера, который управляет нагревателем с помощью ШИМ, исходя из следующей формулы:

Как можно увидеть, есть три параметра K p , K i и K d . Параметр K p пропорционален ошибке в настоящее время. Параметр K i учитывает ошибки, которые накопились с течением времени. Параметр K d является предсказанием будущей ошибки. В нашем случае мы для адаптивной настройки мы используем PID библиотеку Бретта Борегарда (Brett Beauregard), которая имеет два набора параметров: агрессивный и консервативный. Когда текущая температура далека от заданного значения, контроллер использует агрессивные параметры; в противном случае, он использует консервативные параметры. Это позволяет нам получить малое время нагрева, сохраняя при этом точность.

Ниже приведена принципиальная схема. Станция использует 8-битный микроконтроллер ATmega8 в DIP корпусе (вы можете использовать ATmega168-328, если они есть у вас под рукой), который очень распространен, а вариант 328 содержится в Arduino Uno. Я выбрал его, потому что его легко прошить, используя Arduino IDE, в котором также есть готовые к использованию библиотеки.

Температура считывается с помощью термопары, встроенной в паяльник. Мы усиливаем напряжение, создаваемое термопарой, примерно в 120 раз с помощью операционного усилителя. Выход операционного усилителя подключается к выводу ADC0 микроконтроллера, который превращает напряжение в значения от 0 до 1023.

Заданное значение устанавливается с помощью потенциометра, который используется в качестве делителя напряжения. Он подключен к выводу ADC1 контроллера ATmega8. Диапазон 0-5 вольт (выход потенциометра) преобразуется в значения 0-1023 с помощью АЦП, а затем в значения 0-350 градусов Цельсия с помощью функции " map ".

Список комплектующих

Обозначение Номинал Количество
IC1 ATMEGA8-P 1
U1 LM358 1
Q1 IRF540N 1
R4 120 кОм 1
R6, R3 1 кОм 2
R5, R1 10 кОм 2
C3, C4, C7 100 нФ 3
Y1 16 МГц 1
C1, C2 22 пФ 2
R2 100 Ом 1
U2 LM7805 1
C5, C6 100 мкФ (можно и меньше) 2
R7, R8, R9, R10, R11, R12, R13, R14 150 Ом 8

Это список компонентов, экспортированный из KiCad. Кроме того, вам понадобятся:

  • клон паяльника Hakko, самого популярного в китайских онлайн магазинах (с термопарой, а не с термистором);
  • источник питания 24 В, 2 А (я рекомендую использовать импульсный, но вы можете использовать трансформатор с выпрямительным мостом);
  • потенциометр 10 кОм;
  • электрическая штепсельная вилка авиационного типа с 5 контактами;
  • электрический разъем, устанавливаемый на заднюю панель для подачи питания 220 В;
  • печатная плата;
  • выключатель питания;
  • штырьковые разъемы 2,54 мм;
  • много проводов;
  • разъемы Dupont;
  • корпус (я напечатал его на 3D принтере);
  • один тройной семисегментный светодиодный индикатор;
  • программатор AVR ISP (для этого вы можете использовать Arduino).

Конечно, вы можете легко заменить светодиодный индикатор LCD дисплеем или использовать кнопки, вместо потенциометра, ведь это ваша паяльная станция. Я изложил свой вариант дизайна, но вы можете по-своему.

Инструкции по сборке

Во-первых, вы должны изготовить печатную плату. Используйте тот способ, который предпочитаете; я рекомендую перенос рисунка платы тонером лазерного принтера, поскольку это самый простой способ. Кроме того, печатная плата у меня удлинена, потому что я хотел, чтобы она совпадала по размеру с источником питания, и я мог бы установить ее на него. Не стесняйтесь изменять плату, вы можете скачать файлы проекта и отредактировать их с помощью KiCad. После того, как изготовите печатную плату, припаяйте к ней все компоненты.

Обязательно установите выключатель между источником питания и разъемом питания. Используйте относительно толстые провода для соединений источника питания с печатной платой и выходного разъема со стоком MOSFET транзистора (точка H на плате) и земли на печатной плате. Для подключения потенциометра подключите 1-ый контакт к линии +5В, 2-ой - к точке POT, и 3-ий - к земле. Обратите внимание, что я использую светодиодный индикатор с общим анодом, что может отличаться от того, что у вас. Вам придется немного изменить код, но все инструкции в коде программы прокомментированы. Подключите выводы E1-E3 к общим анодам/катодам, а выводы a-dp к соответствующим выводам вашего индикатора. Для более подробной информации смотрите техническое описание на него. И наконец, установите выходной разъем паяльной станции и припаяйте к нему все соединения. Вам должна помочь картинка, приведенная выше, со схемой и цоколевкой разъема.

Теперь начинается интересное, загрузка кода. Для этого вам понадобится PID библиотека (ссылка на GitHub).

#include // Этот массив содержит сегменты, которые необходимо зажечь для отображения на индикаторе цифр 0-9 byte const digits = { B00111111, B00000110, B01011011, B01001111, B01100110, B01101101, B01111101, B00000111, B01111111, B01101111 }; int digit_common_pins = {A3, A4, A5}; // Общие выводы для тройного 7-сегментного светодиодного индикатора int max_digits = 3; int current_digit = max_digits - 1; unsigned long updaterate = 500; // Изменяет, как часто обновляется индикатор. Не ниже 500 unsigned long lastupdate; int temperature = 0; // Определяет переменные, к которым мы подключаемся double Setpoint, Input, Output; // Определяет агрессивные и консервативные параметры настройки double aggKp = 4, aggKi = 0.2, aggKd = 1; double consKp = 1, consKi = 0.05, consKd = 0.25; // Задать ссылки и начальные параметры настройки PID myPID(&Input, &Output, &Setpoint, consKp, consKi, consKd, DIRECT); void setup() { DDRD = B11111111; // установить выводы Arduino с 0 по 7 как выходы for (int y = 0; y < max_digits; y++) { pinMode(digit_common_pins[y], OUTPUT); } // Мы не хотим разогревать паяльник на 100%, т.к. это может сжечь его, поэтому устанавливаем максимум на 85% (220/255) myPID.SetOutputLimits(0, 220); myPID.SetMode(AUTOMATIC); lastupdate = millis(); Setpoint = 0; } void loop() { // Прочитать температуру Input = analogRead(0); // Преобразовать 10-битное число в градусы Цельсия Input = map(Input, 0, 450, 25, 350); // Отобразить температуру if (millis() - lastupdate > updaterate) { lastupdate = millis(); temperature = Input; } // Прочитать установленное значение и преобразовать его в градусы Цельсия (минимум 150, максимум 350) double newSetpoint = analogRead(1); newSetpoint = map(newSetpoint, 0, 1023, 150, 350); // Отобразить установленное значение if (abs(newSetpoint - Setpoint) > 3) { Setpoint = newSetpoint; temperature = newSetpoint; lastupdate = millis(); } double gap = abs(Setpoint - Input); // Расстояние от установленного значения if (gap < 10) { // мы близко к установленному значению, используем консервативные параметры настройки myPID.SetTunings(consKp, consKi, consKd); } else { // мы далеко от установленного значения, используем агрессивные параметры настройки myPID.SetTunings(aggKp, aggKi, aggKd); } myPID.Compute(); // Управлять выходом analogWrite(11, Output); // Отобразить температуру show(temperature); } void show(int value) { int digits_array = {}; boolean empty_most_significant = true; for (int z = max_digits - 1; z >= 0; z--) // Цикл по всем цифрам { digits_array[z] = value / pow(10, z); // Теперь берем каждую цифру из числа if (digits_array[z] != 0) empty_most_significant = false; // Не отображать впереди стоящие нули value = value - digits_array[z] * pow(10, z); if (z == current_digit) { if (!empty_most_significant || z == 0) // Проверить, что это у нас не ведущий ноль, и отобразить текущую цифру { PORTD = ~digits]; // Удалить ~ для общего катода } else { PORTD = B11111111; } digitalWrite(digit_common_pins[z], HIGH);// Изменить на LOW для общего катода } else { digitalWrite(digit_common_pins[z], LOW); // Изменить на HIGH для общего катода } } current_digit--; if (current_digit < 0) { current_digit = max_digits; // Начать сначала } }

Если у вас есть программатор AVR ISP, вы знаете, что нужно делать. Подключите контакты +5V, GND, MISO, MOSI, SCK и RESET, скачайте скетч Arduino, откройте его (вам понадобится установленная на компьютере Arduino IDE) и нажмите «Загрузить».

Если у вас нет программатора, то можете использовать Arduino. Подключите свою плату Arduino (Uno/Nano) к компьютеру, перейдите в меню Файл → Примеры → ArduioISP и загрузите его. Затем перейдите в Инструменты → Программатор → Arduino as ISP . Подключите свою плату к плате Arduino, скачайте скетч, а затем выберите Скетч → Загрузить через программатор.

Вот и всё. Теперь вы можете наслаждаться работой паяльной станцией, собранной собственными руками.

Калибровка

А нет, еще не всё. Теперь нам нужно откалибровать ее. Так как нагреватели и термопары в паяльниках могут различаться, особенно если вы используете неоригинальный паяльник Hakko, нам нужно откалибровать паяльную станцию.

Во-первых, нам нужен цифровой мультиметр с термопарой для измерения температуры жала паяльника. После того, как вы измерили температуру, вам необходимо изменить значение по умолчанию " 510 " в строке кода map(Input, 0, 510, 25, 350) , используя следующую формулу:

где TempRead - это температура, которая отображается на вашем цифровом термометре, а TempSet - это температура, которую вы установили на паяльной станции. Это всего лишь приблизительная настройка, но ее должно хватить, ведь вам не нужна при пайке предельная точность. Я использовал градусы Цельсия, но вы можете изменить их в коде на Фаренгейты.

Печать корпуса на 3D принтере (необязательно)

Я разработал и напечатал корпус, в который можно было бы установить импульсный источник питания и печатную плату, чтобы всё выглядело аккуратно. К сожалению, для использования этого корпуса вам необходимо будет найти точно такой же тип источника питания. Если у вас есть подходящий источник, и вы хотите напечатать корпус, или если вы хотите изменить его под свои требования, то можете скачать приложенные файлы. Я печатал с заполнением 20% и толщиной слоя 0,3. Вы можете использовать более высокий уровень заполнения и меньшую высоту слоя, если у вас есть время и терпение.

Заключение

Вот и всё! Надеюсь статья оказалась полезной. Ниже приведены все необходимые материалы.

Оригинал статьи:

  • Cezar Chirila .

Давненько хочу себе паяльную станцию, а точнее паяльник с термостабилизацией. У нас такие паяльники стоят от 3500р, дорого конечно и жалко отдать такие деньги. Зато продаются сами паяльники от станций и стоят они копейки. Купил себе самый простой паяльник за 500р LUT0035, в интернете об этой модели ничего нет, только на этикетке паяльника указанно 24В 48В. Привез его домой и начал мудрить. Первым делом определил параметры для своей паяльной станции:
— Регулировка температур 180-360C
— Ограничение тока потребления для паяльника
— Возможность выводить паяльник в режим ожидания
Параметры определил и перешел к схематике

Собирать все решил на ШИМ TL494 в ней есть все что надо: два компоратора ошибок и регулировка скважности через 4 ножку DT. Уже развел схему, рассчитал почти всю обвязку вокруг TL494 и оказалось что мне ее будет мало. Паяльник, что я приобрел, для определения температуры использует термопару вместо терморезистора и мне пришлось добавить усилитель напряжения на дополнительном ОУ LM358. В итоге получилась вот такая схемка

В схеме ничего особого. С Термопары берется напряжение равное примерно 0.025В при 350C и умножается с помощью усилителя на LM358 примерно в 140 раз и делится пополам делителем R6R16
C помощью переменного резистора R8 выставляется нужное пороговое напряжение на 2 ноге компоратора ошибки равное примерно 1,75В. Пока потенциалы между первой и второй ногой не уровняются ШИМ будет моделировать импульсы на управляющем транзисторе T1. Транзистор брал IRF630

Кнопка S1 устанавливается на рычаг-подставку для паяльника, когда кнопка замкнута ширина импульсов ограничивается и ток потребление падает примерно в двое, что экономит ресурс паяльника

R12R13 делитель определяющий ток потребления, настроен на напряжение 0,2В, Что при шунте 0,1Ом поддерживает ток примерно 2А. Ток захотел ограничивать да бы экономить ресурс паяльника и трансформатора
Трансформатор взял с двумя последовательными обмотками по 17В с общей точкой и сделал с емкостью фильтра 4700мкФ, Питание микросхем через Крен 7812

Для индикации нагрева поставил параллельно нагревателю светодиод красного цвета.

Ну и парочка фото паяльной станции

В принципе все на этом, все элементарно. Паяльник работает как положено. С комнатной температуры до 200C нагревается за 85сек, до 350С — примерно 215сек

Пробовал расплавить тугоплавкий припой, который 25Вт сетевой паяльник не мог взять. Станция расплавила без проблем, массивные дорожки и детали типа КУ202 в железном корпусе паяются легко

В общем самодельной паяльной станцией остался доволен. Единственное не устраивает жало паяльника, нужно прикупить что то удобное

Скачать печатную плату
Прочитайте
С ув. Admin-чек

Для создания неразъемных соединений применяют несколько технологий. Одна из них это пайка. От традиционной сварки ее отличают низкие температуры, соединение между собой выполняют с помощью специального материала – припоя. В процессе пайки, расплавленный припой наносят на соединяемые детали, по мере остывания, он затвердевает и заготовки соединяются между собой.

Пайку выполняют с использованием различных устройств – электрического паяльника, паяльной станции и пр.

Принцип работы и общие характеристики

Паяльная станция, а иногда ее называют станком или установкой это устройство, которое широко применяют и в быту, и в электронике, и электротехнике. Основное предназначение этого оборудования – групповая или единичная пайка деталей.

В конструкцию этого оборудования входят следующие компоненты:

  1. Блок управления, который контролирует рабочие параметры работы устройства.
  2. Паяльник, предназначенный для выполнения пайки.
  3. Пинцет, участвующий в сборке/разборке элементов, устанавливаемых на печатную плату.
  4. Фен, который предназначен для нагрева сборочного места. Его можно использовать для выполнения как единичных, так и групповых операций.
  5. Источник тепла, используемый для нагрева печатной платы для определенной в технологическом процессе температуры.
  6. Прибор для удаления лишнего олова.
  7. Вспомогательную оснастку – подставки и пр.
  8. Браслеты, которые снимают статическое напряжение.

Самые простые станции включают в себя паяльники, контролирующего прибора и подставки под паяльник. Ключевое отличие станции с феном от традиционного паяльника заключается в том, использование этого станка позволяет не только соединять между собой детали, но, при этом оптимизировать температурный режим. В состав станции входят различные приспособления, которые не только повышают производительность, но и обеспечивают безопасность работника.

И конечно нельзя забывать то, что паяльные станции с феном оснащены приспособлением для снятия статического напряжения.

Характеристики, а так же принципы работы станции с феном не отличаются большой сложностью, и это позволяет, соорудить паяльную станцию с феном своими руками.

Рекомендации по сборке самодельной паяльной станции с феном

Ключевое требование, которое можно предъявить к самодельной паяльной станции с феном можно сформулировать следующим образом – она должна обеспечить поток воздуха разогретый до температуры не менее 850 ⁰C. При этом мощность нагревательного элемента в паяльной станции не должна превышать 2,6 кВт.

Кроме этого, все компоненты этого паяльного станка с феном не должны иметь высокую стоимость и быть доступными. Кстати, бытовые фены не отвечают ни одному этому требованию. Чаще всего домашние мастера стремятся изготовить или ручной, или стационарный термофен.

Как ни странно, стационарное изделие собрать легче. Это вызвано следующими причинами – ни кто не ограничивает мастера в габаритно – весовых характеристиках. Нет необходимости в изготовлении пистолетной рукояти, которая необходима для управления прибором.

Термофен, в стационарном исполнении работает следующим образом – излучатель тепла стоит неподвижно на рабочем столе, а перемещать необходимо деталь. Такое решение приводит к осложнениям во время выполнения пайки. Для повышения эффективности пайки, целесообразно использовать ручной паяльник (термофен). Такой прибор должен иметь небольшие размеры, а управлять им можно незащищенными руками.

Один из главных вопросов, который встанет перед мастером, решившимся собрать паяльную станцию своими руками, звучит примерно так, какой нагревательный инструмент целесообразно использовать. Как уже отмечалось, компоненты из которых состоит бытовой фен не отвечают требованиям, которые предъявляются к устройствам этого типа. Поэтому, использовать их при создании самодельной паяльной станции недопустимо.

Практика создания самодельных станций говорит о том, что самый оптимальный вариант – это самостоятельное изготовление нагревателя из нихромовой проволоки. Ее сечение должно находится в диапазоне от 0,4 до 0,8 мм. При этом надо понимать, что использование проволоки большего сечения позволит обеспечить больший запас мощности, но получить при этом необходимую для работы температуру будет довольно сложно.

По определению нагреватель не должен быть большим. Для этого нагревательная спираль не должна превышать 4 – 8 мм, по внешнему диаметру. В качестве основания, на котором будет зафиксирован нагревательный элемент необходимо, использовать материал с высокой стойкостью к воздействию высокой температуры. Это может керамика. Кстати, вполне может подойти деталь такого плана, устанавливаемая в бытовом фене.

В качестве нагнетателя можно установить вентилятор небольшого размера. Кстати, его тоже можно снять со старого фена.

Вентилятор должен обеспечить поток воздуха в пределах 20-30 литров в минуту. Еще один вариант – воздушный компрессор для аквариумов. Для повышения его производительности необходимо дополнить его ресивером. Для него можно использовать обыкновенную пластиковую бутылку.

Изготовление корпуса для фена можно выполнить исходя из нескольких вариантов. Можно использовать материалы, которые показывают высокую стойкость к воздействию температуры, например, керамику, но такое решение приведет к удорожанию конструкцию. Можно ее удешевить, используя частичную теплоизоляцию канала, по которому продвигается горячий воздух.

Для корпуса самостоятельно изготавливаемого термофена можно использовать корпус от бытового прибора. Существуют некоторые условия – так, корпус должен быть достаточно объемным, а сопло необходимо выполнять из термостойких материалов или из металлов.

Другая забота, которая встанет перед мастером, это обеспечение работоспособности устройства. В частности, в конструкцию самодельного устройства должен входить пусковой механизм (выключатель) и элемент, отвечающий за регулировку параметров потока воздуха, а именно скорости его движения и его температуры. Для решения этих задач в электрической схеме должны быть установлены реостаты, которые позволяют выполнять плавную настройку мощности.

Сборку изделия начинают с изготовления спирали. При ее намотке необходимо учитывать, что ее сопротивление должно находиться в районе от 75 до 95 Ом. Спираль должна быть намотана на надежный изолятор, а сверху ее необходимо закрыть изолятором, например, асбест или стекловолокно. После сборки этого узла концы спирали должны выходить наружу.

Готовый элемент должен быть установлен в предварительно подготовленный канал корпуса, то есть он должен быть выложен слоем тепловой изоляции. После установки спирали на место ее можно соединять с силовой проводкой, в состав, которой входит выключатель.

ВАЖНО! При выполнении работ необходимо постоянно помнить о тепловой изоляции.

В тыльной части корпуса необходимо смонтировать воздушный нагреватель. Если габариты нагнетателя не позволяют установить его в корпус, то вполне возможно его закрепить с внешней стороны. Для подачи воздуха необходимо присоединить воздуховод.

Правила пользования и техника безопасности

При работе необходимо строго соблюдать технику безопасности и правила использования подобных устройств. Во-первых, необходимо соблюдать противопожарную безопасность.

При работе недопустимо резко изменять температуру в нагревательном элементе.

Во время работу необходимо соблюдать осторожность и не допускать касания нагретых элементов. Недопустимо попадание влаги на корпус и внутрь термофена.

Насадки можно заменять только после того, как фен остынет.

Рабочее место должно хорошо проветриваться.

Схема паяльной станции своими руками, элементная база

Ключевой инструмент паяльной станции является паяльник. Если при самостоятельной сборке станции можно использовать какие-то элементы, снятые, например, с отслуживших свой срок бытовых приборов. То паяльник без всяких споров должен быть новый. Многие мастера отдают предпочтение изделиям Solomon и некоторым другим.

После подбора паяльника можно приступит к выбору диодного моста для электрической схемы и трансформатора. Для того, что бы получить напряжение в 5 В необходим линейный стабилизатор с хорошим охлаждением. В качестве альтернативного варианта можно рассмотреть использование трансформатора, у которого есть в наличии обмотка, которая необходима для обслуживания цифрового блока.

Принципиальную схему самодельного устройства можно поискать на специализированных форумах.

Назначение кнопок и варианты прошивки

На передней панели станции должны быть установлены кнопки управления, отвечающие за исполнение следующих функций:

  • Понижение/повышение температуры с определенным шагом, например в 5 или 10 градусов.
  • Установку заранее подобранных режимов.

Вместо кнопок управления можно использовать внешний прибор (программатор) или выполнить прошивку внутри схемы. Настроить температуру довольно просто.

Регулятор температуры низковольтных паяльников

Новички могут попробовать свои силы собрав упрощенную схему. По сути – это та же станция, только с ограниченными возможностями. Так как в ней будет несколько другая начинка. Она может работать с 12-ти вольтовыми паяльниками или устройств собранных на основании микропаяльника.

В основании такой схемы лежит устройства регулятора сетевого паяльного устройства. Она имеет 16 уровней настройки параметров температуры.