Плазморез из инвертора. Как сделать своими руками хороший плазморез из инвертора Плазменный резак своими руками из инвертора ресанта


В организациях, работа которых связана с цветными видами металлов, не обойтись без такого приспособления как плазменный резак. В бытовых условиях этот инструмент тоже часто применим, причем необязательно покупать готовое орудие, ведь можно сделать плазморез своими руками из инвертора.

О работе плазмореза

Сделать сварочное приспособление с высокой эффективностью получится только в том случае, если человек разбирается в процессе сварки и правилах эксплуатации всех механизмов. Действие инструмента основано на следующем:

  • по кабелям в плазмотрон поступает напряжение, которое создает источник тока;
  • между катодом и анодом, находящимися в горелке, наэлектризовывается дуга;
  • сквозь завинченные каналы проходит поток воздуха под определенным нажимом, который повышает температуру электродуги, направляя ее наружу;
  • в некоторых случаях для этого используется жидкость, при испарении образующая выпускное давление, а плазмой выступает пламя высокой температуры;
  • плазморез переходит в действующую фазу за счет поставки массы электропроводом, который способствует замыканию дуги на разрезаемом участке;
  • во время сварки используют аргон или другие инертные смеси.

Струя воздуха может повышать температуру дуги свыше 7 тыс. градусов, и сварщик может точечным образом быстро прогреть нужный участок металла.

Источник питания

Самодельный плазморез стоит начинать проектировать с поиска генератора тока. В качестве такового может служить привычный инвертор, стоимость которого будет намного меньше обыкновенного оборудования для резки. Большим плюсом его работы является высокочастотное стабильное напряжение, за счет чего дуга будет гореть постоянно, обеспечивая первоклассный рез.

Удобство сварочного инвертора - и в его габаритах, что позволяет осуществлять выездные манипуляции плазморезом. Обязательными условиями работы сварочного плазмореза являются:

  • питание от сети в 220 B;
  • производительность работы - 4 кВт;
  • холостой ход - 220 B;
  • при 10-минутном цикле работы расчетный режим работы - 60%;
  • широта стабилизации силы тока - от 20 до 40 A.

А также можно использовать и сварочный трансформатор с переменным током, но лучше инверторный аппарат применять с аргонной сваркой.

Особенности схемы плазмореза

Существуют разнообразные чертежи и видеоуроки изготовления сварочных плазморезов. Для получения правильного, а, главное, работающего агрегата, необходимы навыки и умение разбираться в схематическом материале и чертежах. Для переделки в самодельный плазморез уже имеющегося сварочного инвертора нужно в электросхему аппарата добавить осциллятор.

Схема работает следующим образом:

  • На резаке расположена кнопка пуска, нажимая на которую, на секцию управления подводится напряжение.
  • Реле обеспечивает подачу воздуха для прочистки плазмотрона, за пару секунд освобождая его камеру от конденсата.
  • Осциллятор ионизирует область между соплом и электродом, вследствие чего загорается дуга.
  • К изделию направляют плазмотрон и зажигается рабочая дуга.
  • Реле геркона отключает сопло и поджиг.

Сборка плазмотрона своими руками

Чтобы сконструировать плазморез из инвертора, понадобится приобрести все сопутствующие детали и подготовить инструменты. Основными комплектующими являются:

  • компрессор;
  • плазмотрон;
  • электроды;
  • сопло;
  • завихритель потоков;
  • изолятор;
  • кнопка спуска;
  • рукоятка с отверстиями для кабелей;
  • кабель-шланг;
  • дистанционная пружина для обеспечения одинакового промежутка между соплом и металлом.









Для начала к сварочному инвертору нужно присоединить шланг, являющийся проводником воздуха от компрессора. Кабель массы и шланг-пакет монтируются с лицевой стороны, и к шланг-пакету присоединяется плазмотрон. Сопло горелки надо присоединить прижимной гайкой. За плазморезом находится электрод и изоляционная втулка, препятствующая возникновению дуги на нежелательном участке.

Завихритель потока направляет его к цели, а вся конструкция укладывается в корпус из металла или фторопласта. После сборки сварочного плазмореза нужно проверить агрегат на работоспособность. При включенном состоянии инвертор подает высокочастотный ток на плазмотрон.

Применяемые электроды

Электроды занимают значимое место в сборке инверторного плазмореза. В плазмотрон нужно подобрать специальный электрод из соответствующего материала. В этих целях применяют детали из следующих тугоплавких веществ:

  • Бериллий.
  • Цирконий.
  • Торий.
  • Гафний.



Эти электроды отличаются способностью создания тугоплавкой пленки оксида во время нагрева, что защищает инструменты от повреждений и повышает уровень предохранения. Если выбирать между этими материалами, то для сварки в бытовых условиях оптимально остановиться на гафниевых и циркониевых электродах, потому что два других элемента вырабатывают токсичные испарения.

О кабель-шлангах и компрессоре

Важной частью сварочного плазмореза из инвертора является компрессор, позволяющий электродуге прогреваться до 8 тыс. градусов и отвечающий за сам процесс резки. В функции компрессора также входит продувание плазмотрона и каналов агрегата, за счет чего удаляется мусор и конденсат. Проходящий по горелке сжатый воздух охлаждает работающие узлы.

Для сварочного плазмореза подойдет обыкновенный компрессор, используемый во время покраски пульверизатором. К оборудованию он подсоединяется с помощью тонкого шланга с соответственным разъемом. На входе нужно прикрепить электроклапан, отвечающий за регулирование подачи воздуха. Компрессор на выходе должен иметь редуктор для получения нормированного давления на плазмотроне.

Шланг от компрессора к горелке и кабель от инвертора прокладывается в одном гофрированном шланге, за счет чего кабель сможет охлаждаться во время перегревания, а также делать работу более удобно. Медный провод должен иметь сечение 5–6 мм 2 , а зажим на выходе должен гарантировать безопасный контакт с деталью инвертора.

Плазморез из сварочного инвертора, сделанный своими руками – вполне достижимая цель. Достигнуть ее получится быстрее с помощью технических рекомендаций и запаса необходимых деталей и инструментов.

Плазменная сварка является современной передовой технологией. До недавнего времени ее применение относилось только к промышленности. Такая сварка производилась на специальном оборудовании. Сейчас плазменный сварочный аппарат своими руками стал реальностью.

Плазменная сварка имеет ряд неоспоримых преимуществ по сравнению с другими видами сварки. Обладание технологией позволяет расширить возможность сварных соединений металлов в домашних условиях. Аппарат можно использовать и для точечной сварки (рис. 1).

Самодельный сварочный аппарат, в том числе аппарат для точечной сварки, состоит из следующих основных частей: источник сварочного тока, плазмотрон, компрессор или баллон с газом и система охлаждения.

Рисунок 1. Конструкция плазменного сварочного аппарата.

При использовании устройства открытого типа (наиболее распространенная конструкция) применяется также источник тока для образования вспомогательной дуги.

В качестве источника тока для сварочной дуги лучше всего использовать стандартный инвертор для электродуговой сварки небольшой мощности. Такой инвертор обеспечивает подачу постоянного тока в сварочную зону, за счет чего зажигается основная дуга между соплом плазмотрона и свариваемой деталью. Мощность инвертора может быть минимальной, так как мощность дуги значительно усиливается за счет потока плазмы (рис. 2).

Изготовление вспомогательного источника тока

Источник тока для вспомогательной дуги собирается самостоятельно. Он включает выпрямительный диодный мост, выходной трансформатор (дроссель) и балластовый (нагрузочный) резистор. Рекомендуются следующие детали: диоды на ток 50 А и рабочее напряжение до 500 В; резистор мощностью до 5 кВт. За счет балластового резистора напряжение на первичной обмотке трансформатора создается порядка 100 В при токе не более 20 А.

Рисунок 2. Конструкция плазменного генератора.

Трансформатор подбирается так, чтобы на вторичной обмотке напряжение составило порядка 20 В. Можно использовать любой трансформатор 110/24 В мощностью 1,6 кВт (например, типа ОСМ). В качестве балластового сопротивления можно использовать любой нагревательный элемент или сборку из нескольких нагревателей.

Сборка вспомогательного источника производится в металлическом щитке. На дне щитка устанавливается трансформатор. Если балласт выполняется из нагревателей, то их следует разместить отдельно в металлическом каркасе. В щитке устанавливается контактная колодка, на которую выводятся концы вторичной обмотки трансформатора, и подключается кабель для подведения тока к плазмотрону.

Выбор источника газа и системы охлаждения

В качестве источника плазмообразующего газа, может использовать автомобильный компрессор для подачи сжатого воздуха мощностью до 50 л/мин. Если вместо газа используется водяной пар, то следует установить стандартный небольшой парогенератор. В этом случае следует использовать только дистиллированную воду.

Охлаждение анода плазмотрона может основываться на автомобильной стеклоочистительной системе. Если есть возможность, то лучше обеспечить охлаждение от водопроводной сети через резиновые шланги.

Как все выглядит?

Плазмотрон состоит из двух основных блоков – анодного и катодного. Анодный блок включает анод, выполненный в виде сопла, и корпус для крепления анода, в котором необходимо разместить охлаждающую рубашку (трубки, змеевик). На корпусе анода закрепляется винт для подведения электропитания.

Рисунок 3. Схема плазмотрона.

Катодный блок состоит из следующих основных частей: корпус блока, держатель катода, катод. В качестве катода используется вольфрамовый сварочный электрод диаметром 4 мм, который совмещен с хвостовиком. Верхняя часть хвостовика завершается регулировочным винтом с изолированной ручкой. Катод закрепляется в держателе катода. Держатель катода состоит из нескольких участков.

Нижний участок – заостренная трубка небольшого диаметра, выполняющая роль направляющей для катода. Средний участок – втулка с внешней резьбой для крепления на корпусе и внутренним каналом для прохождения электрода. Верхний участок – трубка для крепления электрода. Ее внутренний диаметр соответствует диаметру хвостовой части катода. Держатель катода устанавливается внутри корпуса, который выполнен из полимерной трубы. В корпусе катодного блока предусмотрено отверстие и соответствующий штуцер для подачи плазмообразующего газа. Газ подается через трубку, размещенную в пространстве между нижней частью держателя и корпусом. В держателе предусмотрен винт для подключения электрического питания. В корпусе просверлено отверстие для прохождения провода (кабеля) (рис.3).

Изготовление анодного блока

Анод изготавливается как медный колпачок (в виде шляпы). Общая длина анода – 10-15 мм. Нижняя торцевая часть (бортик) имеет диаметр 20-25 мм и длину 3-4 мм. Цилиндрическая часть – диаметром 15-20 мм. В центре анода на всю длину сверлится отверстие диаметром 1,8-2 мм. На цилиндрической части анода нарезается резьба для закручивания его в корпус.

Корпус анодного блока желательно изготовить из бронзы, но можно и из стали, в виде двух цилиндров (труб), между которыми располагается охлаждающая рубашка. Цилиндры свариваются (спаиваются) между собой. Наружный диаметр внешнего цилиндра рекомендуется 50-80 мм. Но размеры цилиндров могут быть любыми с учетом найденных труб. Главное условие: корпус должен состоять из двух цилиндров, которые входят друг в друга, при этом внутренний диаметр должен быть равен диаметру цилиндрической части анода, а между цилиндрами должны располагаться трубки охлаждающего змеевика. Длина корпуса – 30-60 мм.

На цилиндре нарезается резьба с обоих торцов. На нижнем торце резьба нарезается внутри и предназначена для крепления анода, на верхнем торце – внутри внешнего цилиндра для соединения с катодным блоком. На наружном цилиндре изготавливается отверстие с резьбой для установки винта, обеспечивающего подключение кабеля.

Изготовление катодного блока

Корпус катодного блока изготавливается из полимерной или текстолитовой трубы диаметром равным внутреннему диаметру внешнего цилиндра анодного блока. На нижнем торце трубы нарезается внешняя резьба для соединения с корпусом анодного блока. Внутри корпуса нарезается резьба для ввинчивания держателя катода. Длина корпуса 7-10 см.

Держатель катода изготавливается из бронзы или стали и имеет разный диаметр на разных участках. Нижний участок, длиной в 15-20 мм, выполняется в виде заостренной трубки диаметром в 8-10 мм и внутренним диаметром в 5-5,5 мм.

Средний участок, длиной в 20-25 мм, имеет диаметр равный внутреннему диаметру корпуса катодного блока. На этом участке нарезается резьба для крепления на корпусе.

Диаметр внутреннего канала должен быть не менее 5 мм. Верхний участок, длиной в 30-40 мм, имеет диаметр 10-15 мм. Внутренний диаметр этого участка 6-7 мм. На верхнем участке держателя нарезается внутренняя резьба для крепления электрода. Снаружи в верхней части нарезается резьба на длине 20-25 мм для установки стопорной гайки. Такой держатель лучше всего изготовить на токарном станке.

Катод изготавливается из стандартного вольфрамового сварочного электрода диаметром 4 мм. Его конец заостряется. Вольфрамовый стержень длиной в 40-50 мм прочно соединяется с хвостовиком катода, на котором нарезается резьба для крепления на верхнем участке держателя катода. Длина хвостовика 40-60 мм, диаметр 6-7 мм. Верхняя часть хвостовика переходит в регулировочный винт (любой формы), который, в свою очередь, имеет ручку из изоляционного материала. Катод закручивается во внутренний канал держателя так, чтобы его заостренный конец вышел из нижнего (направляющего) участка держателя на 5-10 мм. Путем вращения ручкой положение катода можно изменять.

Для ограничения и контроля продольного перемещения катода служит стопорная гайка, установленная на держателе.

В корпусе катодного блока на уровне нижнего участка держателя сверлится отверстие и устанавливается штуцер для подачи плазмообразующего газа. Газ подается через трубку, размещенную в пространстве между нижней частью держателя и корпусом. В держателе предусмотрен винт для подключения электрического питания. В верхней части корпуса просверлено отверстие для прохождения провода (кабеля).

Сборка плазмотрона

Вначале собирается катодный блок в следующей последовательности. Электрод вкручивается в держатель. Затем держатель вкручивается в корпус. К винту держателя подключается провод, который выводится через отверстие в корпусе. Катодный корпус вкручивается в анодный корпус. Снизу в анодный корпус вкручивается анод. Электрод дополнительно подкручивается так, чтобы стержень уперся в анод. Стопорная гайка на держателе устанавливается по этому положению электрода.

Сборка сварочного аппарата

Сборка сварочного аппарата включает в себя следующие операции. К контактному винту анодного блока плазмотрона присоединяется одна из жил сварочного кабеля от инвертора, вторая закрепляется на свариваемой детали. К штуцеру в анодном блоке присоединяется шланг охлаждения, а к штуцеру катодного блока – шланг от компрессора. На контактных винтах анодного и катодного блоков плазмотрона закрепляется кабель от трансформатора питания вспомогательной дуги. При зажигании вспомогательной дуги катод касается анода и затем быстро отводится на 2-3 мм.

Необходимый инструмент и оборудование.

При изготовлении самодельного сварочного аппарата необходимо использование следующего инструмента:

  • сварочный аппарат;
  • электродрель;
  • болгарка;
  • фрезер;
  • напильник;
  • ножовка по металлу;
  • тиски;
  • круг наждачный;
  • плоскогубцы;
  • отвертка;
  • ключи гаечные;
  • зубило;
  • молоток;
  • штангенциркуль;
  • метчик;
  • плашка;

Плазменная сварка современный эффективный вид сварки. Самодельный сварочный аппарат поможет производить практически любые сварочные работы, в том числе работать как сварочный аппарат для точечной сварки.

И специалисты, и начинающие мастера часто используют в своей работе плазменную резку. Это и понятно: ведь это – незаменимый процесс при самых разных строительных и производственных процессах. Недостаток один: выпускающимися различными фирмами устройства стоят значительных денег, не всем они по карману. Поэтому самые разные рабочие люди, будь то строительные бригады или отдельные мастера, задумываются, как создать плазморез из инвертора, полагаясь только на свои руки и на доступное оборудование, сэкономив тем самым значительную сумму.

Видео: Самодельный плазморез,плазменный резак сделанный за месяц

Основное назначение ручного плазмореза – это резка разных типов металлов. Такие действия необходимы во время возведения различных сооружений. Ведь не нужно использовать другие инструменты. Применение всевозможных электродов, с помощью которых идёт сварочный процесс также возможно, если в наличии самодельный плазморез.

В данном агрегате основополагающий принцип, по которому происходит соединение металлов – это пайка. Именно благодаря высокой температуре припоя ручной плазморез позволяет надежно скреплять разнообразные металлы — это его основное преимущество, поэтому данное оборудование столь и необходимо многим.

Помимо стандартной строительной деятельности используют этот удобный инструмент так же и при кузнечных работах. Ведь при его непосредственном участии можно производить различные манипуляции, как с цветными, так и с черными металлами. Помимо их сваривания: ещё и термическую чистку, и закаливание, и отжиг. По данной причине наличие ручного плазмореза при подобных работах является обязательным, этим обеспечивается и качество продукции и значительно экономия времени.

Конструкция её особенности

Прежде чем начинать самостоятельно собирать плазморез из инвертора, необходимо точно определить его комплектацию и как он будет устроен. Следует понять, что отдельные детали будущего устройства лучше приобрести уже готовыми, нежели собирать самостоятельно, т.к. такая сборка будет сопряжена с определенными трудностями.

Обычно собранный аппарат состоит из следующих основных компонентов, без которых работа его невозможна: это воздушный компрессор, пакет шланго-кабельного типа, источник питания и резак, который официально называют плазмотроном.

Своеобразное «сердце» ручного плазмореза – это источник питания. Именно он подаёт ток необходимой мощности. Технические характеристики агрегата определяются именно этой составляющей.

Если сравнивать используемый на данном устройстве резак (или «плазмотрон»), то видно, что его конструкция значительно отличается от аналогичных компонентов, применяемых в сварочных агрегатах. Тем ни менее, он является не менее важным, чем источник питания. Именно резак (плазморез), является той деталью, самостоятельное создание которой из инвертора сопряжено со значительными проблемами. Приобрести резак лучше уже готовым, в магазине. В дальнейшем это избавит от многих проблем.

В мощных агрегатах для горячей резки металла необходимы функции внутреннего охлаждения. Там для этого применяются различные газовые смеси. Необходимо охлаждение и в ручном плазморезе, но здесь достаточно только своевременной подачи воздуха. С этой целью задействуют компрессор, для работы которого нужен ток силой в пределах 200 А.

Соединительная часть, сквозь которую на резак и идет ток от источника, а также нагоняется посредством компрессора воздух – это кабеле-шланговый пакет.

Об использовании транформатора либо инвертора

Чаще всего при когда планируется собрать плазморез, в роль источника питания берут либо инвертор, либо особый трансформатор. У каждого из этих вариантов имеются свои преимущества, но чтобы понять, какой именно подойдёт, надо точно знать, какие технические характеристики должны получиться у вашего плазмореза, соответственно, надо знать и особенности инвертора и трансформатора.

Преимущества у плазмореза, изготовленного на основе инвертора следующие: в среднем его КПД на треть выше, чем у аналогов, в которых присутствует трансформатор, они наиболее эффективны и экономны. Такое устройство обеспечивает стабильность дуги. К недостаткам относится то, что работа проводится исключительно с материалами незначительной толщины.

Если же за основу взят трансформатор, то такой агрегат наверняка будет громоздким и потребует дополнительную площадку для использования. Но значительным плюсом является то, что он позволяет проводить работы с довольно массивными и толстыми деталями. Такие устройства ставят либо в специально оборудованных для них помещениях либо на передвижных платформах.

Поэтому, если не планируется проводить резку особо крупных объектов, то рекомендуется использовать именно плазморез созданный из инвертора. Принцип прост: надо соединять уже находящийся в вашем распоряжении источник питания и прочие детали, соблюдая определенную последовательность.

Какое оборудование понадобится

Конечно, прежде чем приступать непосредственно к сборке устройства для плазменной резки металла, потребуется приобрести все детали, которые и составят конечный продукт. Но если вы хотите, чтобы предполагаемые функции выполнялись на высоком уровне, без поломок, то некоторые из составляющих надо покупать уже в готовом виде.

Инвертор

Это «сердце» нашего будущего агрегата, и взять его можно из какого-либо сварочного аппарата. В большинстве случаев, это и есть главное материальное вложение в описываемый проект. Для того, чтобы выбрать подходящий инвертор надо точно знать, какие работы будут производиться плазморезом, их объем и т.д. Тогда уже не сложно будет подобрать и мощность инвертора.

Приходится слышать, что некоторые народные умельцы собирают инвертор и своими силами. Для этого кропотливо подбирают детали, используют материалы имеющиеся в их распоряжении. Но на практике оказывается, что такие самодельные конструкции менее надежны, чем покупные варианты. К тому же в домашних условиях трудно обеспечить те же стандарты, что и на производстве. Поэтому предпочтительнее все же покупной вариант инвертора.

Резак

Когда мастера или любители делают своими силами плазморез, то зачастую ошибаются, пытаясь полностью собрать и резак с подачей электричества и воздуха. Составные части резака это: сопло, элементы подвода и ручка. Причем ручка, вследствие её интенсивного использования, изнашивается за короткий период времени и приходится часто её заменять. Поэтому лучшим выбором будет покупка заводского сопла, а вот остальные составляющие можно собрать своими силами. Но вполне обоснованным также является и мнение о том, что затрата большого количества средств и усилий на самостоятельную сборку этой составляющей не продуктивно. Лучше купить заводское изделие.

Компрессор

По инструкции использование компрессора подразумевает, что будет применяться кислород, либо инертный газ. На практике же чаще его подключают к баллонам, в которых – специальная смесь. Именно такая смесь обеспечивает сильный пучок плазмы при достойном охлаждении. Если жеплазморез используется в быту, то для экономии и простоты дела рекомендуют использовать простой компрессор. Эту составляющую вполне можно собрать своими силами, где роль ресивера будет выполнять обычный баллон. Компрессор же часто берут из холодильника, либо из машины ЗИЛ. Важно не ошибиться с регулированием давления. Делается это опытным путем, мастерами, на начальном этапе работ.

Кабель–шланговый пакет

Эту составляющую плазмореза можно купить как по отдельности, так и вместе с основным оборудованием. Главное знать некоторые характеристики агрегата, а именно: какое при работе будет давление, а также какое сечение у кабеля – от этого зависят и характеристики шлангов. Проводник подбирается под силу инвертора. В другом случае он перегреется и может загореться и даже возможно поражение током.

Процесс сборки

Это довольно простая последовательность сборки. Сопло плазмореза соединяется с инвертором и компрессором. Для подобных целей и нужен кабель-шланговой пакет. Потребуются набор клемов и зажимов. С их помощью можно оперативно собирать, а также и разбирать плазморез. Если все сделано грамотно, то на выходе получится устройство весьма компактных параметров. Его легко транспортировать на место, где будет проводиться очередная работа.

  • Прежде всего, вы должны позаботиться о том, чтобы в наличии были запасные прокладки в достаточном количестве. Ведь происходит плазменая резка при использовании газа, а прокладки необходимы для подключения шлангов. И если агрегат планируется достаточно часто перевозить, то без данного элемента никак не обойтись, более того – отсутствие прокладок может стать причиной остановки всей работы.
  • Особо высокие температуры воздействуют на сопло резака. Поэтому, в перспективе длительного использования аппарата, именно эта деталь изнашивается скорее других. Так что в наличии должно быть и запасное сопло.
  • Диапазон цен на инверторы весьма велик: от весьма дешёвых и до действительно дорогих. Главное, что влияет на цену – это мощность инвертора. Так что, прежде чем покупать, определитесь с тем, какая вам потребуется мощность. И уж отталкиваясь от своих реальных потребностей, выбирайте ту или иную модель. Так и деньги сэкономите и создадите плазморез, который подходит именно для вашей работы.
  • Не обойтись без электродов изготовленных из тугоплавких металлов. На рынке выбор достаточно велик. Например, изделия изготовленные из циркония, бериллия или тория. Но при значительном нагреве из определенных металлов происходит выделение опасных компонентов. Наиболее безопасным, а значит и предпочтительным считаются электроды, изготовленные из гафния.
  • Во время проведения работ плазма в таком аппарате раскаляется до 30 тысяч градусов. А это значит, что требуется соблюдений всех мер безопасности. Без этого возможно возгорание, либо же может быть нанесён вред, как сварщику, так и окружающим. По этой причине новичкам, не прошедшим никакого обучения нельзя работать на подобном оборудовании. В идеале должен работать специалист со значительным стажем.
  • Причина, по которой специалисты рекомендуют применять при работах только изготовленные на заводах резаки, это то, что самодельные вариации могут вносить нарушения в вихревой поток воздуха. А это недопустимо, т.к. возможно образование 2-х дуг, которые станут причиной поломки изделия. Поэтому лучше один раз потратиться, чем потом вкладывать дополнительные средства и силы в починку агрегата.
  • Если с помощью инвертора планируется производить работы только одного типа, то в него возможно внесение некоторых модификаций призванных облегчить именно такой тип работ. Например, некоторые умельцы вводят собственные доработки в сопло или создают особый кожух для защиты рук. Главный принцип любого такого дополнения: они не должны идти в разрез с правилами безопасности.

Выводы

Итак, ознакомившись с этим материалом, становится ясно, что для сборки плазмореза с инвертором потребуется приобрести уже готовые составляющие от разных производителей. А что касается изготовления плазмореза, то это простая сборка. Но все же подбор отдельных деталей позволить сэкономить, т.к. если брать полный готовый комплект у одного производителя, то это выйдет гораздо дороже.

Видео: Как превратить инвертор для ручной сварки в полуавтомат

  • Сборка плазменного резака
  • Как работает плазменный резак?

Плазморез своими руками из инвертора не так сложно собрать. Важно предусмотреть наличие следующих элементов:

  • плазмотрон, т. е. непосредственно плазменный резак;
  • источник питания, в качестве которого выступает сварочный инвертор (можно применять и трансформатор);
  • компрессор для подачи воздушной струи охлаждения и формирования плазменного потока;
  • кабель-шланги для сборки и подключения отдельных элементов в единую систему.

Плазморез можно использовать не только для резки различных деталей, но и для сварки.

Плазменный самодельный резак можно использовать для выполнения различных работ. Это не только производство, но и бытовые работы, например, обработка различных металлических заготовок, где требуется точный тонкий и высококачественный рез. Есть модели, которые можно использовать для сварки в защищенной газовой среде с использованием аргона.

Принцип работы аппарата плазменной резки металла.

При сборке внимание следует уделить силе тока. Величина зависит от источника питания, предпочитают использовать инвертор. Он обеспечивает более стабильную работу, энергопотребление экономнее, чем у трансформатора, хотя толщина заготовок, с которыми он может работать, ниже. Почему именно инвертор? Все дело в том, что он удобнее в работе, чем трансформатор. Его вес меньше, он не такой массивный. Электроэнергии потребляется меньше, при этом КПД выше на 10%, что положительным образом сказывается на качестве работы.

Схемы для сборки можно использовать уже готовые, если покупаются элементы конструкции все вместе. Можно ее взять из сети, особенно когда все детали уже есть и покупать ничего не требуется. При сборке внимание следует уделять точности и четкости соответствия схеме, соединению отдельных элементов. Сопло следует брать длинным, но не слишком, так как его придется быстро заменять.

Выбор конструктивных элементов

Изготовление плазмореза своими руками из инвертора требует наличия таких элементов:

  1. Источник питания для оборудования, в этом качестве и выступает инвертор, обеспечивающий подачу тока с необходимыми характеристиками на плазморез. Вместо инвертора, если его нет в наличии или невозможно найти, можно использовать трансформатор.
  2. Если вместо инвертора выбирается трансформатор, необходимо учесть его большой вес и слишком высокое потребление электроэнергии.
  3. Плазмотрон, т. е. плазменный резак, который является основным элементом конструкции.
  4. Воздушный компрессор и кабель-шланговый пакет.

Виды плазменных резаков.

Что выбрать в качестве источника тока для сборки плазмореза? Трансформатор - не самый лучший вариант по целому ряду причин. Дело не только в его большом весе, что затрудняет использование оборудования после сборки, но и в слишком большом потреблении электроэнергии. Устройство получается слишком затратным. Из преимуществ следует отметить слабую чувствительность к перепадам напряжения в сети во время работы. Таким оборудованием можно резать различные заготовки, толщина которых значительная.

Инвертор в качестве источника питания является более предпочтительным, он экономнее, его стоимость ниже. Кроме того, вес инвертора гораздо меньше, устройство после сборки в использовании проще. Но толщина заготовок не может быть слишком большой. Такие плазменные резаки можно использовать в домашних мастерских, на небольшом производстве, так как мощности вполне хватает для такого «скромного» производства. Есть и еще одно преимущество в пользу первого. Это уровень КПД, который у инверторного резака примерно на 30% выше, дуга отличается более стабильными показателями, резка получается качественнее. Удобнее такое оборудование и для работы в труднодоступных местах, где трансформаторные использовать не получается. Плазмотрон - главный элемент резака, его конструкция включает в себя сопло, канал подачи воздуха (сжатого для обеспечения резки), электрод, изолятор/охладитель.

Вернуться к оглавлению

Схема плазменной сварки открытой и закрытой плазменной струей.

Для плазмотрона необходимо подобрать электрод, можно приобрести из тория, бериллия, циркония либо гафния. Такие материалы являются оптимальными для обеспечения резки воздушно-плазменного типа. На поверхности электродов в процессе резки возникают так называемые тугоплавкие оксиды, они не дают электроду разрушаться. При выборе следует помнить, что некоторые их этих металлов опасны для сварщика. Бериллий вызывает образование радиоактивных оксидов, а торий - токсичных. Лучше всего использовать гафний, он абсолютно безопасен для оператора.

При сборке внимание следует уделить соплу, при помощи которого формируется струя для резки. От диаметра сопла зависят характеристики струи, время резки, ширина резки. Лучше всего использовать изделия диаметром в 3 см, длина его должна быть значительной, чтобы рез получился более качественным и аккуратным. Однако брать слишком длинное сопло нельзя, оно быстро разрушается.

Для подачи воздуха конструкции необходим компрессор. Особенности работы резака предполагают, что использоваться будут газы для защиты и плазмообразования, при этом работа проводится при силе тока в 200 А, но не больше. Для функционирования устройства используется сжатый воздух, он необходим для охлаждения оборудования в процессе работы и для формирования плазмы. Такой вариант позволяет резать заготовки, толщина которых составляет 50 мм. Для промышленного оборудования сжатый воздух не используется, здесь применяются кислород, гелий, водород, аргон, азот, их смеси.

Для соединения источника питания, плазмотрона и компрессора применяется специальный кабель-шланговый пакет. Порядок сборки такой:

  1. Инвертор (или трансформатор) электрическим кабелем соединяется с электродом для создания дуги.
  2. Через шланг от компрессора подается сжатый воздух, он образует плазменную струю внутри плазмотрона.

Вернуться к оглавлению

Схема работы плазморезом.

После того как плазменный резак собран, надо проверить его работоспособность. При включении инвертор начинает подавать ток на плазмотрон с высокой частотой. Появляется дуга, ее температура в этот момент составляет от 6000°С до 8000°С, зажигается она между наконечником сопла и рабочим электродом. Далее в камеру начинает поступать сжатый воздух, он из патрубка проходит через электродугу, нагревается, в объеме увеличивается до 100 раз. Струя приобретает токопроводящие свойства, ионизируется.

Соплом формируется узкий рабочий поток, скорость которого равна 2-3 м/сек. Температура в это время сильно повышается, может достигать от 25000°С до 30000°С. На выходе образуется высокотемпературная плазма, используемая для резки. При соприкосновении плазмы и детали дежурная первоначальная дуга гаснет, а зажигается уже режущая, которая обрабатывает деталь локально. Металл плавится только в месте реза, потоком воздуха все металлические расплавленные частички сдуваются.

Использование такого резака из обычного сварочного инвертора позволяет получить аккуратные резы в металлических заготовках. При работе необходимо следить, чтобы пятно дуги находилось строго по центру катода/электрода, для чего используется так называемая тангенциальная подача рабочего воздушного потока. Если при работе такой воздушный вихревой поток будет нарушен, то работать устройство начнет нестабильно, качество реза сильно ухудшится. Важно, чтобы при работе не образовывалось сразу две дуги, в этом случае аппарат просто выйдет из строя. Нельзя, чтобы плазменный резак имел слишком сильный поток воздуха.

Скорость, обеспечивающая хорошее качество, равна 800 м/сек, но при этом сила тока должна составлять до 250 А, не выше.

Но надо учесть, что расход воздуха будет увеличен.

Плазменный резак, в качестве главного элемента которого используется инвертор для дуговой сварки, применяется для реза металлических заготовок. Сборка простая, конструкция включает себя такие элементы, как источник тока, сопло, плазменный резак, компрессор. При сборке следует сразу определиться с источником питания, вместо инвертора некоторые предпочитают трансформатор. Все преимущества и недостатки устройств были описаны выше, вам остается только сделать выбор.

expertsvarki.ru

Самодельный плазморез из инверторного сварочного аппарата: схема и порядок сборки

Резка металла осуществляется несколькими способами – механическим методом, дуговой сваркой или воздействием плазмы с высокой температурой. В последнем случае в качестве источника питания можно использовать инвертор. Для изготовления своими руками эффективного плазмореза потребуется ознакомиться со схемой и принципом работы устройства.

Схема плазменного резака

Обработка металлических поверхностей, их резка и контролируемое деформирование происходит с помощью струи воздуха или инертного газа. Давление и наличие воспламеняемого компонента (электрода) обеспечивает формирование области плазмы. Она оказывает влиянием высокой температурой и давлением на область заготовки, в результате чего происходит ее разрезание.

Особенности изготовления плазмореза на основе инверторного сварочного аппарата:

  • Предварительный расчет мощности оборудования. Определяющий параметр – толщина и свойства разрезаемого материала.
  • Мобильность конструкции и ее габариты.
  • Продолжительность непрерывного реза.
  • Бюджет.

Последний показатель не должен влиять на качество, а главное – безопасность работы самодельного плазменного резака. Рекомендуется использовать максимум компонентов заводского изготовления.

Инверторный сварочный аппарата – это источник дуги для розжига плазмы. Также он применяется по прямому назначению – формирование соединительных швов. Для комплектации плазмореза нужно приобретать только заводские модели, так как самодельные не смогут обеспечить стабильность работы.

Для обеспечения мобильности нужно купить инвертор с функцией аргонодуговой сварки. В его конструкции предусмотрено место для подключения шланга от источника воздуха или инертного газа. Средняя стоимость – 19 500 рублей.

Дополнительно потребуются следующие компоненты:

  • Резак с функцией подачи электричества, проволоки (электрода) и воздуха.
  • Компрессор. Он нужен для нагнетания газа, альтернатива – заправленные баллоны.
  • Кабель-шланговый пакет. Это магистрали для электричества, воздушный шланг и устройство для подачи проволоки.

Из всего перечня сделать своими руками можно только ручку для резака. Именно она чаще всего выходит из строя из-за постоянного температурного воздействия. Размеры и эксплуатационные свойства остальных компонентов должны отвечать стандартам качества.

Пошаговая инструкция по сборке

По сути плазморез не изготавливается, а собирается из вышеописанных элементов. Предварительно проверяется возможность подключения отдельных компонентов, уточняются режимы работы – величина подаваемого тока от инвертора, интенсивность воздушной струи, температура плазмы.

Дополнительно нужно использовать манометр для контроля давления в воздушной магистрали. Оптимальный вариант расположения – на корпусе инвертора. На держателе он будет мешать точному формированию реза.

Порядок работы:

  1. Проверить питание инвертора.
  2. Проконтролировать герметичность воздушной магистрали.
  3. Установить давление струи инертного газа на требуемый уровень.
  4. Подключить отрицательный электрод инвертора к заготовке.
  5. Проверка дуги, активация подачи воздуха.
  6. Плазменная резка.

В процессе резания возникают проблемы – отсутствие комплектующих, нестабильный режим установки. Вероятные последствия – невозможность продолжать работу, некачественный рез. Выход – тщательно подготовиться к этому мероприятию.

  • Запасные прокладки для воздушной магистрали. Частое переключение приводит к их стиранию и потере герметичности.
  • Качество сопла. При длительном температурном воздействии оно может засориться, изменить геометрию.
  • Электроды только из тугоплавких материалов.
  • Причина поломки самодельных резаков – возникновение 2-х воздушных вихрей, что приводит к деформации сопла.
  • Обязательно выполнять работы только в защитной одежде.

ismith.ru

Плазморез из инвертора своими руками: чертежи, инструкция по изготовлению:

Сделать плазморез из инвертора своими руками - это задача, которая под силу практически любому хорошему хозяину. Одно из главных достоинств этого прибора заключается в том, что после резки таким устройством не возникнет необходимости в дополнительной обработке краев металлических листов.

Аппараты прямого действия

В настоящее время существует множество вариантов ручных плазморезов, как и множество различных вариантов, их работы. Одна из таких установок - это резак с прямым принципом действия. Работа этого типа устройства основывается на применении электрической дуги. Эта дуга имеет вид цилиндра, к которому подведена струя газа. Именно за счет такой необычной конструкции, в этом аппарате можно достичь колоссальной температуры примерно в 20 000 градусов. Кроме того этот аппарат способен не только развивать огромную температуру, но и быстро охлаждать другие рабочие элементы.

Аппарат косвенного действия

Установки косвенного действия используются не так часто, как прямого. Все дело в том, что они характеризуются меньшим показателем коэффициента полезного действия, то есть КПД.

Устройство этих инструментов также довольно специфичное и заключается оно в том, что активные точки цепи размещаются либо на трубе, либо на специальном вольфрамовом электроде. Эти устройства стали довольно широко применяться тогда, когда требуется произвести напыление или нагреть металлические части. Однако в качестве плазменного резака этот тип оборудования не применяется. Чаще всего их используют для того, чтобы провести ремонт автомобильных узлов, не извлекая их при этом из корпуса.

К особенностям работы таких резаков также можно отнести то, что они способны работать только в том случае, если имеется воздушный фильтр, а также охладитель. Наличие воздушных фильтров в этом устройстве обеспечивает более длительный срок службы таких элементов, как катод и анод, а также влияет на ускорение процесса запуска механизма.

Конструкция ручного инструмента

Для того чтобы обеспечить выполнение всех нужных функций плазморезом из инвертора своими руками, необходимо понимать основной принцип действия. Вся работоспособность устройства зависит от подачи сильно нагретого воздуха с резака на лист металла. Температурные условия, которые необходимо создать - это несколько десятков тысяч градусов. При нагреве кислорода до таких пределов, он под давлением подается из резака на поверхность, которую необходимо разрезать. Именно этот процесс работы является основополагающим. Резка металлических листов осуществляется сильно нагретым кислородом под высоким давлением.

Для того чтобы ускорить данный процесс, необходимо учитывать ионизацию электрическим током. Также важно отметить, что можно увеличить срок службы изготовленного плазмореза своими руками из инвертора, если в устройстве будут находиться некоторые дополнительные детали.

Дополнительные элементы

Всего имеется пять основных элементов, которые должны входить в конструкцию плазмореза.

  • Первая и основная деталь - это плазмотрон. Именно этот элемент отвечает за выполнение всех основных функций резака.
  • Далее идет плазморез. Конструкция этого элемента может быть выполнена двумя способами - прямым или косвенным. В чем разница между этими конструкциями описано выше.
  • Также важно наличие электродов, как расходников для плазмореза.
  • Одной из важнейших деталей стало сопло. Конфигурация именно этого элемента дает возможность мастеру понять, для резки какого именно металлического листа предназначается этот резак.
  • Компрессор. Необходимость этой детали вполне понятна. Так как для резки необходимо подавать кислород под большим давлением, то наличие этого устройство жизненно важно для функционирования аппарата в целом.

Выбор деталей

Для того чтобы изготовить плазморез своими руками из инвертора, необходимо определиться с тем, из каких именно элементов его создавать.

Деталью, которая будет создавать необходимую мощность для резки, может быть инвертор или трансформатор. При выборе данного элемента устройства очень важно понимать, какой именно толщины металл необходимо будет разрезать. Именно толщина металла и будет являться основополагающим фактором, который повлияет на выбор этой детали. Так как собирается ручной резак, то лучше, конечно, приобретать сварочный инвертор. Его мощность несколько меньше, чем у трансформатора, но он намного легче и сэкономит большое количество электроэнергии.

Второй важной деталью станет выбор между плазменным резаком или плазменной точкой. Основным критерием выбора тут станет тот же фактор, что и при подборе сварочного инвертора, то есть толщина металла. Однако нужно учесть еще один нюанс. Оборудование прямого воздействия предназначается для работы с элементами способными проводить ток. Косвенный же элемент чаще всего устанавливается в том случае, если в работе необходимо обойтись без вещей, использующих ток.

Еще один важный элемент - это компрессор. Его выбор уже проще, так как единственное важное требование - это мощность, которая должна подходить под ранее выбранные части.

Последняя деталь - кабель-шланговый пакет. Предназначается для соединения всех деталей, приведенных выше.

Принцип действия

Для того чтобы создать хороший рабочий инструмент этого типа, очень важно понимать принцип работы и устройство плазмореза. Работает этот аппарат следующим образом:

  1. При запуске оборудования, источник тока начинает производить выработку необходимого напряжения, которое передается через кабеля в резак-горелку.
  2. В плазмотроне(резак-горелка) имеется два основных элемента - это катод и анод. Между этими двумя деталями будет происходить возбуждение дуги.
  3. Мощный поток воздуха, который движется под высоким давлением, а также преодолевает специальные закрученные кабеля, выводит дугу наружу. В это же время, подаваемый воздух сильно увеличивает температуру дуги.
  4. Далее в работу вступает кабель массы, который всегда заранее подключается к устройству. Он создает замыкание дуги на рабочей поверхности, что и обеспечивает стабильную работу плазмореза.
  5. Важно отметить, что при переделке инвертора в плазморез сохраняется возможность сварки. То есть резак можно использовать еще и как сварочный аппарат. В этом случае лучше всего использовать аргон в качестве основного газа или же другую инертную смесь, которая способна защитить сварочную ванну, от воздействия окружающей среды.

Устройство резака

Так как температура дуги искусственно повышается при помощи подачи горячего воздуха, то ее температура в самодельном плазморезе может достигать 8 000 градусов. Это очень высокий температурный показатель, который позволяет производить точечную резку металла, не нагревая при этом другие части листа. Как и любые другие технические приборы, плазморезы из инвертора своими руками будут отличаться между собой по своей мощности, которая будет определять, насколько толстый лист стали сможет разрезать аппарат. Ручные резаки чаще всего могут осилить лист до 10 мм толщиной. Промышленные агрегаты способны справиться с металлом толщиной в 100 мм. Самодельный плазморез, изготовленный своими силами сможет разрезать листы с толщиной до 12 мм.

Такие изделия можно использовать для того, чтобы заниматься фигурной резкой, а также сваривать легированные стали с присадочной проволокой. Простейшие резаки включают в себя четыре основных детали - источник питания, плазмотрон, компрессор, масса.

Как сделать плазморез?

Сборка этого устройства всегда должна начинаться с источника питания. В промышленных агрегатах используют трансформатор, чтобы добиться большей мощности, а, значит, и разрезать более толстый металл. Для ручного домашнего резака отлично подойдет обычный инвертор, который способен обеспечить такие показатели, как устойчивое напряжение и высокую частоту. Преимуществом использования именно инвертора станет и его легкий вес, который сделает аппарат более удобным для перевозки, а также он вполне способен обеспечить стабильное горение дуги резака и качество самой резки.

Кроме этого, инвертор должен соответствовать еще нескольким требованиям:

  • Его питание должно осуществляться от сети в 220В.
  • Работа резака должна проходить с мощностью в 4 кВт.
  • Диапазон регулировки тока для ручного устройства должен быть от 20 до 40 А.
  • Холостой ход также 220В.
  • Номинальный режим работы при цикле в 10 минут не должен превышать 60%.

Для того чтобы достичь всех указанных параметров, необходимо использовать определенное дополнительное оборудование.

Схема плазмореза

Для того чтобы изготовить рабочее устройство, необходимо сверяться со схемой этого устройства. Найти такую схему можно без проблем в интернете, однако ее еще необходимо прочитать. Для этого необходимо иметь самые минимальные знания в электротехнике. Именно правильно сборка по схеме обеспечивает реальную работу агрегата.

Работа схемы изделия

Сборка своими руками плазмореза по чертежу - это важнейший процесс, который обеспечит стабильную работу аппарата в будущем. Готовая и правильно собранная схема выглядит следующим образом:

  • Плазмотрон обладает кнопкой, которая запускает весь рабочий процесс. Нажатие этой кнопки будет запускать реле Р1. Функция этого элемента заключается в подаче тока на блок управления.
  • Далее в работу включается реле Р2. Оно выполняет такие задачи, как пуск тока на инвертор и одновременное включение электроклапана, который занимается продувкой горелки. Этот продув необходим для того, чтобы высушить камеру горелки и очистить ее от возможного мусора или окалины.
  • После трех секунд задержки включается реле Р3, которое подает ток на электроды.
  • Вместе с включением этого реле, запускается осциллятор, который ионизирует воздух между катодом и анодом, тем самым возбуждая дежурную электрическую дугу.
  • Когда пламя подводят к изделию, то зажигается дуга между листом и плазмотроном, которая называется рабочей.
  • В этот момент отсекается подача тока, которая работает на розжиг.
  • Далее проводятся работы по резке или сварке металла.
  • По завершении работы и нажатии кнопки на плазмотроне, срабатывает реле Р4, которое отключает обе дуги, а также на короткий промежуток времени включает подачу воздуха в камеру горелки, чтобы удалить нагоревшие элементы.

Плазмотрон, электроды, компрессор

Резка или сварка металла осуществляется таким элементом, как плазмотрон. Сделать его на водной основе своими силами очень проблематично, а потому лучше купить. Своими руками чаще всего делают плазмотроны с воздушной системой.

Для этого и требуется компрессор, который, отвечает за выдув, и нагрев дуги до нужных 8 000 градусов. Также этот элемент выполняет очистительную функцию в резаке, осушая его и очищая от нежелательных элементов и мусора. В качестве компрессора можно использовать деталь, применяемую в обычном пульверизаторе.

Важной частью самодельного резака будут, использующиеся электроды. При их покупке важно уточнять из какого они материала. Бериллий и торий при использовании выделяют вредные испарения. Использовать их лучше только в специальной среде, где гарантируется безопасность человека. Лучшим выбором для домашнего резака станут электроды из гафния.

www.syl.ru

Плазморез своими руками

Плазменная резка – достаточно востребованная операция, особенно, когда дело касается резки толстых металлических деталей или заготовок. Процесс происходит быстро, кромки металла остаются ровными. Но такой аппарат стоит недешево. Поэтому многие умельцы изготавливают для себя плазморез своими руками из разных видов оборудования, соединив их в одну конструкцию. Схема соединения их проста, главное – правильно подобрать приборы по необходимым техническим характеристикам.

Основы плазменной резки

В основе плазменной резки лежит ионизированный газ, который вылетает из сопла горелки с большой скоростью. Этот газ и есть та самая плазма. Что она делает.

  • По сути, это ионизированная среда является отличным проводником электрического тока, который от электрода поступает к металлической заготовке.
  • Плазма нагревает металл до необходимой температуры.
  • Она же сдувает расплавленный металл, освобождает пространство реза.

Значит, чтобы создать плазму, необходим газ и источник электроэнергии. И эти две составляющие должны соединиться в одном месте. Поэтому оборудование плазменной резки состоит из баллона с газом, источника электроэнергии повышенной силы и резака, в котором установлен электрод.

Конструкция резака изготовлена таким образом, чтобы вокруг электрода проходил газ и в нагретом от электрода виде вырывался наружу через небольшое отверстие. Небольшой диаметр отверстия и давление газа создают необходимую скорость плазме. При изготовлении самодельной плазменной резки нужно просто приобрести готовый резак и не думать над его созданием. Потому что в нем уже все продумано, плюс заводской вариант – это гарантия безопасности.

Что касается газа, то от всех вариантов давно уже отказались, оставив сжатый воздух. Получить его можно сегодня очень просто – приобрести и установить компрессор.

Есть определенные условия, которые гарантируют качество резки плазмой.

  • Сила тока на электроде не должна быть меньше 250 А.
  • Сжатый воздух должен подаваться на резак со скоростью в пределах 800 м/сек.

Как сделать плазморез своими руками

Основы плазменной резки понятны, конструкция плазмореза тоже ясна, можно приступать к его сборке. Кстати, для этого не нужны специальные чертежи.

Итак, что будет необходимо.

  • Нужно найти источник электроэнергии. Самый простой вариант – это сварочный трансформатор или инвертор. По многим причинам инвертор лучше. К примеру, у него стабильное значение тока, без перепадов. Он экономичнее в плане потребления электроэнергии. Обратить внимание придется на ток, который выдает сварочный аппарат. Его значение не должно быть меньше 250 ампер.
  • Источник сжатого воздуха. Здесь без изменений – компрессор. Но какой? Основной параметр – давление воздуха. На него и надо будет обратить внимание. 2,0-2,5 атм. – будет нормально.
  • Резак можно приобрести в магазине. И это будет идеальным решением. Если есть в наличии резак для аргонной сварки, то и его можно переделать под плазменную резку. Для этого из меди придется сделать насадку в виде сопла, которая вставляется в резак аргонной сварки.
  • Комплект шлангов и кабелей, для соединения всех частей самодельного плазмореза. Опять-таки комплект можно приобрести в магазине, как единый соединяющий элемент.

Вот четыре элемента, с помощью которых собирается самодельный плазморез.

Вспомогательные элементы и материалы

На что еще необходимо обратить внимание, собирая аппарат плазменной резки своими руками. Как уже было сказано выше, основная характеристика плазменного резака – это диаметр его отверстия. Каких размеров он должен быть, чтобы качество реза было максимальным. Специалисты считают, что диаметр в 30 мм – оптимальный размер. Поэтому, покупая резак в магазине, нужно обратить внимание, есть ли в его комплекте сопло с таким отверстием.

К тому же надо подбирать сопло со значительной длиной. Именно этот размер дает возможность струе сжатого воздуха набрать необходимую скорость. От чего рез металла получается аккуратным, а сам процесс резки быстрым и легким. Но не стоит приобретать сопло уж очень большой длины. Такое приспособление быстро разрушается под действием высоких температур.

Что касается выбора электрода для плазмореза, то тут необходимо обратить внимание на сплав, из которого он изготовлен. К примеру, если в сплав входит бериллий, то это радиоактивное вещество. Работать с такими электродами долго не рекомендуется. Если в сплав входит торий, то при высоких температурах он выделяет токсичные вещества. Идеальный электрод для плазменной резки, в сплав которого входит гафний.

Проверка плазмореза

Итак, шланги соединяют резак и компрессор, кабель резак и инвертор. Теперь необходимо проверить, а работает ли собранная конструкция. Включаются все агрегаты, на резаке нажимается кнопка подачи электроэнергии на электрод. При этом образуется дуга с температурой 6000-8000С. Она проскакивает между металлом электрода и сопла.

После этого начинает подаваться в резак сжатый воздух. Проходя через сопло и нагреваясь от электрической дуги, он резко расширяется в десять раз и при этом приобретает токопроводящие свойства. То есть, получается ионизированный газ.

Он проходит через суженное сопло, при этом приобретая скорость в пределах 2-3 м/сек. А вот температура плазмы повышается до 25000-30000С. Самое важное, что дуга, с помощью которой был разогрет сжатый воздух и превращен в плазму, гаснет, как только плазма начинает воздействовать на металлическую заготовку, подготовленную к резке. Но тут же включается вторая, так называемая рабочая дуга, которая на металл действует локально. Именно в зону реза. Поэтому металл режется только в этой зоне.

Если при проверке работы плазменного резака у вас получилось разрезать металл толщиною не меньше 20 мм, то все элементы новой конструкции, собранной своими руками, были подобраны правильно. Необходимо обратить внимание, что заготовки толщиною более 20 мм плазморез из инвертора не режет. У него просто не хватает мощности. Чтобы резать металл большей толщины, придется использовать трансформатор.

Внимание! Любые работы, связанные с использование плазменной резки, должны проводиться в защитной одежде и перчатках.

Существует много моментов, которые обязательно сказываются на работе агрегата.

  • Приобретать, например, большой компрессор нет необходимости. Но 2-2,5 атмосфер при большом объеме работ может не хватить. Выход из положения – установить на компрессоре ресивер. Он работает, как аккумулятор, накопляющий давление в сжатом воздухе. Для этого дела можно приспособить, к примеру, болоны от тормозной системы большегрузных машин. Вариант на самом деле простой. Объем у баллона большой, и его должно хватить на длительный промежуток времени.
  • Чтобы давление воздуха было стабильным и одинаковым, на выходе ресивера нужно установить редуктор.
  • Конечно, оптимальное решение – приобрести компрессор в комплекте с ресивером. Стоит он дороже обычного, но если этот агрегат использовать и для других дел, к примеру, для покраски, то можно увеличить его функциональность и тем самым покрыть затраты.
  • Чтобы сделать мобильную версию станка, можно изготовить тележку небольших размеров. Ведь все элементы плазмореза – небольшие по габаритам приспособления. Конечно, о мобильности придется забыть, если станок изготовлен на основе сварочного трансформатора. Слишком он большой и тяжелый.
  • Если нет возможности купить готовый комплект шланг-кабель, то можно его сделать самостоятельно. Нужно сварочный кабель и шланг высокого давления объединить в один рукав и поместить их в единую оболочку. К примеру, в обычный шланг большего диаметра. Сделанный таким образом комплект просто не будет мешаться под ногами, что очень важно при проведении резки металлов.

Сделать свой собственный плазморез совсем несложно. Конечно, надо будет получить необходимую информацию, изучить ее, обязательно рекомендуется посмотреть обучающее видео. И после этого правильно подобрать все элементы точно под необходимые параметры. Кстати, собранный плазморез на основе серийного инвертора дает возможность не только проводить плазменную резку металлов, но и плазменную сварку, что увеличивает функциональность агрегата.

Плазменная резка широко используется в различных отраслях промышленности: машиностроении, судостроении, изготовлении рекламы, коммунальной сфере, изготовлении металлоконструкций и в других отраслях. К тому же, в частной мастерской плазморез тоже может пригодиться. Ведь с помощью него можно быстро и качественно разрезать любой токопроводящий материал, а также некоторые нетокопроводящие материалы - пластик, камень и дерево. Разрезать трубы, листовой металл, выполнить фигурный рез или изготовить деталь можно просто, быстро и удобно с помощью технологии плазменной резки. Рез выполняется высокотемпературной плазменной дугой, для создания которой нужен лишь источник тока, резак и воздух. Чтобы работа с плазморезом давалась легко, а рез получался красивым и ровным, не мешает узнать принцип работы плазмореза, который даст базовое понятие, как можно управлять процессом резки.

Аппарат под названием «плазморез» состоит из нескольких элементов: источника питания , плазменного резака/плазмотрона , воздушного компрессора и кабель-шлангового пакета.

Источник питания для плазмореза подает на плазмотрон определенную силу тока. Может представлять собой трансформатор или инвертор.

Трансформаторы более увесисты, потребляют больше энергии, но зато менее чувствительны к перепадам напряжения, и с помощью них можно разрезать заготовки большей толщины.

Инверторы легче, дешевле, экономнее в плане энергопотребления, но при этом позволяют разрезать заготовки меньшей толщины. Поэтому их используют на маленьких производствах и в частных мастерских. Также КПД инверторных плазморезов на 30 % больше, чем у трансформаторных, у них стабильнее горит дуга. Пригождаются они и для работы в труднодоступных местах.

Плазмотрон или как его еще называют «плазменный резак» является главным элементом плазмореза. В некоторых источниках можно встретить упоминание плазмотрона в таком контексте, что можно подумать будто «плазмотрон» и «плазморез» идентичные понятия. На самом деле это не так: плазмотрон - это непосредственно резак, с помощью которого разрезается заготовка.

Основными элементами плазменного резака/плазмотрона являются сопло , электрод , охладитель/изолятор между ними и канал для подачи сжатого воздуха.

Схема плазмореза наглядно демонстрирует расположение всех элементов плазмореза.

Внутри корпуса плазмотрона находится электрод , который служит для возбуждения электрической дуги. Он может быть изготовлен из гафния, циркония, бериллия или тория. Эти металлы приемлемы для воздушно-плазменной резки потому, что в процессе работы на их поверхности образуются тугоплавкие оксиды, препятствующие разрушению электрода. Тем не менее, используют не все эти металлы, потому что оксиды некоторых из них могут нанести вред здоровью оператора. Например, оксид тория - токсичен, а оксид бериллия - радиоактивен. Поэтому самым распространенным металлом для изготовления электродов плазмотрона является гафний. Реже - другие металлы.

Сопло плазмотрона обжимает и формирует плазменную струю, которая вырывается из выходного канала и разрезает заготовку. От размера сопла зависят возможности и характеристики плазмореза, а также технология работы с ним. Зависимость такая: от диаметра сопла зависит, какой объем воздуха может через него пройти за единицу времени, а от объема воздуха зависят ширина реза, скорость охлаждения и скорость работы плазмотрона. Чаще всего сопло плазмотрона имеет диаметр 3 мм. Длина сопла тоже важный параметр: чем длиннее сопло, тем аккуратнее и качественнее рез. Но с этим надо быть поаккуратнее. Слишком длинное сопло быстрее разрушается.

Компрессор для плазмореза необходим для подачи воздуха. Технология плазменной резки подразумевает использование газов: плазмообразующих и защитных. В аппаратах плазменной резки, рассчитанных на силу тока до 200 А, используется только сжатый воздух, и для создания плазмы, и для охлаждения. Такого аппарата достаточно для разрезания заготовок 50 мм толщиной. Промышленный станок плазменной резки использует другие газы - гелий, аргон, кислород, водород, азот, а также их смеси.

Кабель-шланговый пакет соединяет источник питания, компрессор и плазмотрон. По электрическому кабелю подается ток от трансформатора или инвертора для возбуждения электрической дуги, а по шлангу идет сжатый воздух, который необходим для образования плазмы внутри плазмотрона. Более детально, что именно происходит в плазмотроне, расскажем ниже.

Как только нажимается кнопка розжига, источник питания (трансформатор или инвертор) начинает подавать на плазмотрон токи высокой частоты. В результате внутри плазмотрона возникает дежурная электрическая дуга, температура которой 6000 - 8000 °С. Дежурная дуга зажигается между электродом и наконечником сопла по той причине, что образование дуги между электродом и обрабатываемой заготовкой сразу - затруднительно. Столб дежурной дуги заполняет весь канал.

После возникновения дежурной дуги в камеру начинает поступать сжатый воздух. Он вырывается из патрубка, проходит через электрическую дугу, вследствие чего нагревается и увеличивается в объеме в 50 - 100 раз. Помимо этого воздух ионизируется и перестает быть диэлектриком, приобретая токопроводящие свойства.

Суженное к низу сопло плазмотрона обжимает воздух, формирует из него поток, который со скоростью 2 - 3 м/с вырывается из сопла. Температура воздуха в этот момент может достигать 25000 - 30000 °С. Именно этот высокотемпературный ионизированный воздух и является в данном случае плазмой. Ее электропроводимость примерно равна электропроводимости металла, который обрабатывается.

В тот момент, когда плазма вырывается из сопла и соприкасается с поверхностью обрабатываемого металла, зажигается режущая дуга, а дежурная дуга гаснет. Режущая/рабочая дуга разогревает обрабатываемую заготовку в месте реза - локально. Металл плавится, появляется рез. На поверхности разрезаемого металла появляются частички расплавленного только что металла, которые сдуваются с нее потоком воздуха, вырывающегося из сопла. Это самая простая технология плазменной резки металла.

Катодное пятно плазменной дуги должно располагаться строго по центру электрода/катода. Чтобы это обеспечить, используется так называемая вихревая или тангенциальная подача сжатого воздуха. Если вихревая подача нарушена, то катодное пятно смещается относительно центра электрода вместе с плазменной дугой. Это может привести к неприятным последствиям: плазменная дуга будет гореть нестабильно, может образовываться две дуги одновременно, а в худшем случае - плазмотрон может выйти из строя.

Если увеличить расход воздуха, то скорость плазменного потока увеличится, также увеличится и скорость резки. Если же увеличить диаметр сопла, то скорость уменьшится и увеличится ширина реза. Скорость плазменного потока примерно равна 800 м/с при токе 250 А.

Скорость реза - тоже важный параметр. Чем она больше, тем тоньше рез. Если скорость маленькая, то ширина реза увеличивается. Если увеличивается сила тока, происходит то же самое - ширина реза увеличивается. Все эти тонкости относятся уже непосредственно к технологии работы с плазморезом.

Параметры плазмореза

Все аппараты плазменной резки можно разделить на две категории: ручные плазморезы и аппараты машинной резки.

Ручные плазморезы используются в быту, на маленьких производствах и в частных мастерских для изготовления и обработки деталей. Основная их особенность в том, что плазмотрон держит в руках оператор, он ведет резак по линии будущего реза, держа его на весу. В итоге рез получается хоть и ровным, но не идеальным. Да и производительность такой технологии маленькая. Чтобы рез получился более ровным, без наплывов и окалины, для ведения плазмотрона используется специальный упор, который одевается на сопло. Упор прижимается к поверхности обрабатываемой заготовки и остается только вести резак, не переживая за то, соблюдается ли необходимое расстояние между заготовкой и соплом.

На ручной плазморез цена зависит от его характеристик: максимальной силы тока, толщины обрабатываемой заготовки и универсальности. Например, существуют модели, которые можно использовать не только для резки металлов, но и для сварки. Их можно отличить по маркировке:

  • CUT - разрезание;
  • TIG - аргонодуговая сварка;
  • MMA - дуговая сварка штучным электродом.

Например, плазморез FoxWeld Plasma 43 Multi совмещает все перечисленные функции. Его стоимость 530 - 550 у.е. Характеристики, касающиеся плазменной резки: сила тока - 60 А, толщина заготовки - до 11 мм.

Кстати, сила тока и толщина заготовки - основные параметры, по которым подбирается плазморез. И они взаимосвязаны.

Чем больше сила тока, тем сильнее плазменная дуга, которая быстрее расплавляет металл. Выбирая плазморез для конкретных нужд, необходимо точно знать, какой металл придется обрабатывать и какой толщины. В приведенной ниже таблице указано, какая сила тока нужна для разрезания 1 мм металла. Обратите внимание, что для обработки цветных металлов требуется большая сила тока. Учтите это, когда будете смотреть на характеристики плазмореза в магазине, на аппарате указана толщина заготовки из черного металла. Если вы планируете резать медь или другой цветной металл, лучше рассчитайте необходимую силу тока самостоятельно.

Например, если требуется разрезать медь толщиной 2 мм, то необходимо 6 А умножить на 2 мм, получим плазморез с силой тока 12 А. Если требуется разрезать сталь толщиной 2 мм, то умножаем 4 А на 2 мм, получаем силу тока 8 А. Только берите аппарат плазменной резки с запасом, так как указанные характеристики являются максимальными, а не номинальными. На них можно работать только непродолжительное время.

Станок с ЧПУ плазменной резки используется на производственных предприятиях для изготовления деталей или обработки заготовок. ЧПУ означает числовое программное управление. Станок работает по заданной программе с минимальным участием оператора, что максимально исключает человеческий фактор на производстве и увеличивает производительность в разы. Качество реза машинным аппаратом идеально, не требуется дополнительная обработка кромок. А самое главное - фигурные резы и исключительная точность. Достаточно ввести в программу схему реза и аппарат может выполнить любую замысловатую фигуру с идеальной точностью. На станок плазменной резки цена значительно выше, чем на ручной плазморез. Во-первых, используется большой трансформатор. Во-вторых, специальный стол, портал и направляющие. В зависимости от сложности и размеров аппарата цена может быть от 3000 у.е. до 20000 у.е.

Аппараты машинной плазменной резки используют для охлаждения воду, поэтому могут работать всю смену без перерыва. Так называемый ПВ (продолжительность включения) равен 100 %. Хотя у ручных аппаратов он может быть и 40 %, что означает следующее: 4 минуты плазморез работает, а 6 минут ему необходимо для того, чтобы остыть.

Наиболее разумно будет приобрести плазморез готовый, заводского исполнения. В таких аппаратах все учтено, отрегулировано и работает максимально идеально. Но некоторые умельцы «Кулибины» умудряются смастерить плазморез своими руками. Результаты получаются не очень удовлетворительными, так как качество реза хромает. В качестве примера приведем урезанный вариант, как можно сделать плазморез самостоятельно. Сразу оговоримся, что схема далека от идеала и лишь дает общее понятие процесса.

Итак, трансформатор для плазмореза должен быть с падающей ВАХ.

Пример на фото: первичная обмотка - снизу, вторичная - сверху. Напряжение - 260 В. Сечение обмотки - 45 мм2, каждая шина 6 мм2. Если установить силу тока на 40 А напряжение падает до 100 В. У дросселя также сечение 40 мм2, наматывался той же шиной, всего около 250 витков.

Для работы нужен воздушный компрессор, естественно, заводского исполнения. В данном случае использовался агрегат производительностью 350 л/мин.

Самодельный плазморез - схема работы .


Плазмотрон лучше приобрести заводской, он обойдется примерно в 150 - 200 у.е. В данном примере плазмотрон изготавливался самостоятельно: медное сопло (5 у.е.) и гафниевый электрод (3 у.е.), остальное «кустарщина». За счет чего расходники быстро вышли из строя.

Схема работает так: на резаке находится кнопка пуск, при ее нажатии реле (р1) подает на блок управления напряжение, реле (р2) подает напряжение на трансформатор, затем пускает воздух для продувки плазмотрона. Воздух осушает камеру плазмотрона от возможного конденсата и выдувает все лишнее, на это у него есть 2 - 3 секунды. Именно с такой задержкой срабатывает реле (р3), которое подает питание на электрод для поджига дуги. Затем включается осциллятор, который ионизирует пространство между электродом и соплом, как результат загорается дежурная дуга. Далее плазмотрон подносится к изделию и загорается режущая/рабочая дуга между электродом и заготовкой. Реле геркона отключает сопло и поджиг. Согласно данной схеме, если режущая дуга внезапно погаснет, например, если сопло попало в отверстие в металле, то реле геркона снова подключит поджиг и спустя несколько секунд (2 - 3) загорится дежурная дуга, а затем режущая. Все это при условии, что кнопка «пуск» не отпускается. Реле (р4) пускает воздух в сопло с задержкой, после того, как отпустили кнопку «пуск» и режущая дуга погасла. Все эти предосторожности необходимы для того, чтобы продлить ресурс сопла и электрода.


Самостоятельное изготовление плазмореза в «домашних» условиях дает возможность изрядно сэкономить, но о качестве реза говорить не приходится. Хотя если за работу возьмется инженер, то результат может быть даже лучше заводского исполнения.

Станок плазменной резки с ЧПУ может позволить себе не каждое предприятие, ведь его стоимость может достигать 15000 - 20000 у.е. Довольно часто такие организации заказывают выполнение работ плазменной резки на специальных предприятиях, но это тоже обходится недешево, особенно если объемы работ большие. Но ведь так хочется свой новый станок плазменной резки, а средств не хватает.

Помимо известных профильных заводов есть предприятия, которые занимаются производством станков плазменной резки, закупая лишь профильные детали и узлы, а все остальное изготавливают самостоятельно. В качестве примера мы расскажем, как делают станки плазменной резки с ЧПУ инженеры в производственном цеху.

Составляющие станка плазменной резки своими руками:

  • Стол 1270х2540 мм;
  • Ременная передача;
  • Шаговые детали;
  • Линейные направляющие HIWIN;
  • Система, управляющая высотой факела THC;
  • Блок управления;
  • Стойка-терминал, в котором находится блок управления ЧПУ, стоит отдельно.

Характеристики станка :

  • Скорость перемещения по столу 15 м/мин;
  • Точность установки позиции плазмотрона 0,125 мм;
  • Если использовать аппарат Powermax 65, то скорость реза будет 40 м/мин для 6 мм заготовки или 5 м/мин для заготовки толщиной 19 мм.

На подобный станок плазменной резки металла цена будет около 13000 у.е., не включая источник плазмы, который придется приобрести отдельно - 900 у.е.

Для изготовления такого станка комплектующие заказываются отдельно, а затем все собирается самостоятельно по такой схеме:

  • Готовится основание для сварки стола, оно должно быть строго горизонтальным, это очень важно, лучше проверить уровнем.
  • Сваривается рама станка в виде стола. Можно использовать трубы квадратного сечения. Вертикальные «ноги» необходимо усилить укосинами.

  • Рама покрывается грунтовкой и краской, чтобы защитить от коррозии.

  • Изготавливаются опоры для станка. Материал опор - дюраль, болты 14 мм, гайки лучше приварить к болтам.

  • Сваривается водяной стол.

  • Устанавливаются крепления для реек и ставятся рейки. Для реек используется металл в виде полосы 40 мм.
  • Устанавливаются линейные направляющие.
  • Корпус стола зашивается листовым железом и окрашивается.
  • Устанавливается портал на направляющие.

  • На портал устанавливается двигатель и концевые индуктивные датчики.
  • Устанавливаются рельсовые направляющие, зубчастая рейка и двигатель оси Y.

  • Устанавливаются направляющие и двигатель на оси Z.
  • Устанавливается датчик поверхности металла.

  • Устанавливается кран для слива воды из стола, ограничители для портала, чтобы не съехал со стола.
  • Устанавливаются кабель-каналы Y,Z и X.


  • Все провода прячутся в гофру.
  • Устанавливается механизированная горелка.
  • Далее изготавливается терминал с ЧПУ. Сначала сваривается корпус.
  • В корпус терминала с ЧПУ устанавливается монитор, клавиатура, модуль ТНС и кнопки к нему.

Все, станок плазменной резки с ЧПУ готов.

Несмотря на то, что плазморез имеет достаточно простое устройство, все же не стоит браться за его изготовление без серьезных познаний в сварочном деле и большого опыта. Новичку проще заплатить за готовое изделие. А вот инженеры, желающие воплотить свои знания и умения в домашних условиях, что называется «на коленке», могут попробовать создать плазморез своими руками от начала и до конца.