Резец имеющий две вспомогательные режущие кромки называется. Резец (инструмент). Классификация резцов для токарной обработки

И так здравствуйте друзья! Сегодня мы с вами поговорим про то какие основные части и элементы токарного резца. Эта тема необходима нам потому, что это необходимо знать для дальнейшего изучения механической обработки на токарных станках.

Для того чтобы было более понятно посмотрим на этот рисунок где изображен токарный резец и обозначены основные его составляющие. Или как их можно назвать элементы резца. Вы конечно можете меня обвинить, что я для примера привел резец очень древний, но извините это классика.

Элементы токарного резца подразделяются:

1. Это так называемый стержень (или державка) самого резца. Он непосредственно служит для крепления инструмента в резцедержателе токарного станка или револьверную головку.

2. Передняя поверхность. По ней сходит стружка в процессе и падает в станину.

3. Вершина резца . Ну хочу вам сразу сказать, что вершина токарного резца должна находится строго по оси обрабатываемой заготовки не ниже и не выше иначе будет повышенный износ режущей пластины и как следствие ее разрушение.

4. Главная режущая кромка. Ну тут все понятно) главная кромка напрямую участвует в процессе резания, а если сказать проще срезает металл с заготовки.

5. Главная задняя поверхность . Имеет угол аналогичный наклону главной режущей кромки но в срезании металла не участвует.

6. Вспомогательная режущая кромка . Не участвует в процессе резания не помню честно говоря зачем она 🙂 если кто помнит пишите в комментариях обсудим и подискутируем.

7. Вспомогательная задняя поверхность . Эта поверхность является продолжением заднего угла вспомогательной режущей кромки.

Во общем не так уж сложно запомнить под главной режущей кромкой находится главная задняя поверхность а под вспомогательной соответственно вспомогательная поверхность. Уф ну и закрутил)))))

ДААА! вы наверное заметили что на вышеуказанном рисунке есть еще и сноска под названием головка резца. Но я про нее не забыл я как раз хотел вам про нее рассказать, а именно что все вышеуказанные пункты кроме стержня или державки и есть головка токарного резца.

Ну конечно вы сейчас скажите, что я рассказал про конструкцию «доисторического» токарного резца и будете от части правы это токарный резец с напаянной пластиной НО режущий инструмент с неперетачиваемыми твердосплавными пластинами имею такие же поверхности — ЭТО КЛАССИКА 🙂 .

Видео про основные части и элементы токарного резца:

Ну вот и все. Думаю что прочитав мою статью про основные части и элементы конструкции токарного резца,закрепив все этим на мой взгляд достаточно толковым видео вы поняли что к чему. Ну а если нет пишите в комментариях, что не понятно будем разбираться вместе. ДО ВСТРЕЧИ!!!

Да чуть не забыл А ТЫ ПОДПИСАЛСЯ на новые новости моего блога:) !

С вами был Андрей!

У резца различают главные углы, вспомогательные углы и углы в плане.

Главные углы измеряются в сечении главной секущей плоскости А-А (рис. 13), которая перпендикулярна к проекции главной режущей кромке на основную плоскость.

g - главный передний угол – угол между передней поверхностью и плоскостью, перпендикулярной к плоскости резания.

Рисунок 7 – Элементы резца Рисунок 8 – Поверхности и плоскости

при токарной обработке

Рисунок 9 – Углы токарного резца

С увеличением угла g инструмент легче врезается в материал, снижается сила резания и расход мощности, повышается качество обрабатываемой поверхности. С другой стороны чрезмерное увеличение угла g снижает прочность главной режущей кромки и увеличивает ее износ. Величина g обычно составляет 0 - 15 о, а при обработке твердых материалов и ударных нагрузках передний угол может быть отрицательным и достигать – 10 о.

a  – главный задний угол – угол между главной задней поверхностью и плоскостью резания. Угол a предназначен для уменьшения трения между главной задней поверхностью и поверхностью резания, что снижает износ инструмента. Чрезмерное увеличение угла приводит к снижению прочности режущего лезвия. Обычно он составляет 6 – 12 о.

b угол заострения (угол клина), находится между передней и главной задней поверхностью резца (a +b +g = 90 о).

d - угол резания , находится между передней поверхностью и плоскостью резания (d = a + b ).

Вспомогательные углы определяются в сечении вспомогательной секущей плоскостью Б-Б, которая проходит перпендикулярно к проекции вспомогательной режущей кромки на основную плоскость.

a 1 - вспомогательный задний угол , который находится между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно основной плоскости. Угол уменьшает трение между вспомогательной задней поверхностью резца и обработанной поверхностью заготовки. Он составляет обычно 3 – 5°.

К вспомогательным углам относят обычно угол наклона главной режущей кромки l , который определяется между главным режущим лезвием и плоскостью, проходящей через вершину резца параллельно основной плоскости (рис. 14). Угол определяет направление схода стружки и колеблется от + 5 о до - 5 о. Если l = 0, стружка сходит по оси резца, если l < 0 – стружка сходит в направлении подачи, при l > 0 стружка сходит в направлении, обратном направлению подачи. Направление схода стружки существенно при работе на станках-автоматах. С увеличением l качество обработанной поверхности ухудшается.

Рисунок 10 – Углы наклона главной режущей кромки

Углы в плане определяются в основной плоскости на виде сверху.

j - главный угол в плане - угол между проекцией главной режущей кромки на основную плоскость и направлением подачи. С уменьшением j  шероховатость обработанной поверхности уменьшается. Одновременно уменьшается толщина и увеличивается ширина срезаемого слоя, что снижает износ инструмента, однако возможно возникновение вибрации в процессе резания и снижение качества обработанной поверхности. Угол j изменяется в широком диапазоне от 0 о до 95 о.

j 1 вспомогательный угол в плане – угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением, обратном движению подачи. С уменьшением угла j 1 шероховатость уменьшается, увеличивается прочность вершины резца и снижается его износ. У проходных резцов угол j 1 составляет обычно 10 о -30 о.

e - угол при вершине - угол между проекцией главной и вспомогательной режущих кромок на основную плоскость (j +j 1 +e =180 о).

Из рассмотренных углов только b , l иe являются постоянными и не зависят от установки резца. Остальные углы изменяются по величине в зависимости от положения вершины резца относительно центров станка (a, a 1 , j ) или поворота резца в резцедержателе (j, j 1 ).

Режущее лезвие резца не всегда прямолинейно. Для обработки фасонных поверхностей, а иногда и в других случаях, главное режущеелезвие делается криволинейным.

Передняя поверхность резца может иметь три формы (рис. 15): плоскую без фаски, рекомендуемую при обработке серого чугуна, однако она может быть использована и для других материалов (см. рис. 15 а); плоскую с фаской - при токарной обработке стали с большими подачами (см. рис. 15 б); криволинейную с фаской - для резцов всех типов при обработке пластичных материалов (см. рис. 15 в).

Форма головки резца, величина углов, форма передней поверхности и режущего лезвия, размеры сечения резца существенно отражаются на процессе резания. Они влияют на величину сил, температуру резца, что, в свою очередь, должно учитываться при определении режимов резания.

Рисунок 11 – Форма передней поверхности резца

Специалисты, которые неоднократно в своей практике использовали резцы по металлу для токарного станка для выполнения определенных работ, четко понимают, каких типов бывают эти инструменты. Для новичков, кто впервые сталкивается с этими элементами, сложно разобраться, в чем отличительная особенность каждой конкретной модели и как правильно подобрать инструмент для выполнения определенных задач. Разобраться в важном вопросе поможет данная статья.

Конструкция элемента состоит из державки резца, благодаря которой фиксируется инструмент на станке, и рабочей головки, что непосредственно обрабатывает поверхность заготовки. Державка может иметь квадратное или прямоугольное поперечное сечение. Рабочая часть инструмента сформирована из нескольких смежных плоскостей и режущих кромок. Их угол затачивания зависит от характеристики обрабатываемого материала и вида обработки.

Рабочая головка может быть цельной или с приварными или припаянными пластинами. Новинкой являются резцы по металлу для токарного станка со сменными пластинами. Первый вариант представлен цельным с державкой элементом. Такой инструмент может быть изготовлен из специальной высокоуглеродистой инструментальной или быстрорежущей стали. Но такие резцы используются крайне редко.

Преимущественно для металлообработки на токарном станке используются резцы с приварными или припаянными пластинами. Изготавливается инструмент из быстрорежущей стали или твердого сплава, в составе которого присутствуют металлы: титан, вольфрам и тантал. Он отличается высокой прочностью и ценовой политикой. Данный токарный инструмент может быть использован для обработки изделий из цветных металлов, чугуна, любой стали и неметаллических материалов.

Важно! При работе с пластинами из твердых сплавом следует придерживаться правил безопасности, поскольку изделия весьма хрупкие.

Очень часто при обработке материала используются резцы токарные со сменными пластинами. В отличие от предыдущего варианта пластина крепится к головке механически с помощью специальных прижимов или винтов. Инструмент удобен в дальнейшей эксплуатации, если пластина изготовлена из минералокерамики, что существенно увеличивает стоимость резца со сменными пластинами.

Рабочая часть для резца станка токарного может быть изготовлена из твердого сплава (танталово-вольфрамо-титанновые, титановольфрамовые, вольфрамовые), быстрорежущей стали (повышенной или нормальной эффективности), углеродистой стали высокого качества. Резцы могут быть использованы для таких типов токарных станков, как строгальные, токарные, долбежные, револьверто-автоматные и специальные.

Классификация резцов токарных

Согласно ГОСТу существует три вида резцов токарных по металлу:

  • токарные и строгальные, у которых режущая часть изготовлена из быстрорежущей стали;
  • строгальные и токарные твердосплавные напайные;
  • токарные с механическим креплением пластин из керамики, твердых сплавов и других сверхтвердых материалов.

Производители выпускают такие типы резцов:

  • проходные;
  • отрезные;

  • резьбовые;
  • подрезные;
  • расточные;
  • универсальные.

В зависимости от направления, в котором совершаются подающие движения, можно выделить такие виды резцов для токарного станка:

  • левостороннего типа;
  • правостороннего типа.

Для идентификации инструмента необходимо на резец положить руку. Расположение кромки относительно большого пальца правой или левой руки укажет на тип инструмента.

В зависимости от характера работ, существует следующая классификация резцов:

  • для выполнения черновых работ, которые еще носят название обдирочные;
  • для получистовых работ;
  • для проведения чистовых работ;

  • для осуществления тонких технологических операций.

Режущая пластинка всех резцов, независимо от типа инструмента изготавливается из определенной марки твердых сплавов: ТК5К10, ВК8, Т15К6 и Т30К4. Самыми популярными являются резцы ВК8.

В зависимости от принципа установки различают следующие виды резцов по металлу для станка токарного:

  • радиальные;
  • тангенциальные.

В первом варианте токарный инструмент относительно оси заготовки, которая подвергается обработке, располагается под углом в 90 град. Данный тип изделий получил широкое распространение на промышленных предприятиях, благодаря тому, что резец довольно легко и быстро устанавливается в станок. К тому же существует большой выбор геометрических параметров режущей кромки.

Тангенциальный токарный резец располагается под любым углом, отличным от 90 град. относительно оси заготовки. Крепление данного инструмента к токарному станку оказывается более трудоемким, чем в предыдущем варианте. Однако тангенциальные резцы обеспечивают более качественную обработку металлической заготовки. Они могут быть использованы для токарных станков автомат и полуавтомат.

В зависимости от расположения главной режущей кромки относительно стержня существуют такие типы токарных резцов:

  • прямые – все проекции детали имеют прямую линию;
  • отогнутые – верхняя проекция имеет изогнутую линию, нижняя – прямую;
  • изогнутые – верхняя проекция отображена прямо линией, а боковая – изогнутой;
  • оттянутые – головка резца, которая может находиться на оси или быть сдвинутой влево или вправо, имеет меньшую ширину, чем стержень.

Токарные проходные резцы могут быть:

  • прямые;
  • отогнутые;
  • упорные отогнутые.

Проходные прямые резцы используются для обработки внешней поверхности цилиндрической заготовки. Купить прямой проходной резец ГОСТ 18877-73 можно за 280 руб. Державки для такого инструмента могут быть выполнены в двух типоразмерах:

  • традиционной прямоугольной формы – 25х16 мм;
  • квадратной формы, что используется для производства специальных работ – 25х25 мм.

У проходных отогнутых резцов рабочая часть может быть отогнута в левую или правую сторону, что дает возможность во время выполнения работы огибать заготовку с разных сторон. Помимо обработки торцевой части заготовки на токарном станке, инструмент используется для снятия фаски. Согласно ГОСТ 18877-73 державки для данного типа инструмента может иметь такие размеры:

  • 20х12 мм – нестандартное изделие;
  • 25х16 мм – универсальный типоразмер;
  • 32х20 мм;
  • 40х25 мм – изготавливается на заказ для использования на габаритном станке.

Самым востребованным является упорный отогнутый инструмент режущий для станка токарного. Он применяется для обработки цилиндрических заготовок. Особый изгиб элемента позволяет за один проход снимать с круглой детали лишний металл. При обработке заготовки резец двигается вдоль вращения детали. Отогнутые проходные резцы могут быть левосторонними и правосторонними. Последний вариант на практике используется намного чаще. Купить проходной резец можно за 320 руб.отогнутый

Отрезные и подрезные резцы по металлу

Наиболее распространенным является отрезной резец. Он предназначен для отрезания заготовки необходимого размера от металлической трубы, болванки, прутка, который имеет длину, превышающую требуемое значение. Данный тип резцов тяжело перепутать с другим инструментом. Конструкция изделия состоит из тонкой ножки с припаянной на конце пластиной из твердого сплава. Чем уже ножка, тем меньше рез, что соответственно способствует уменьшению количества отходов. Отсечение заготовки от общего металлического тела осуществляется под прямым углом.

Полезный совет! Отрезным режущим инструментом можно вырезать в металлическом изделии тонкие канавки разной глубины.

В зависимости от конструкции исполнения существуют левосторонние и правосторонние отрезные резцы. Чтобы это определить следует повернуть изделие режущей стороной вниз и посмотреть, с какой стороны будет располагаться ножка инструмента. Купить токарный резец отрезной можно за 190 руб.

Производители выпускают режущий инструмент со следующими размерами державки:

  • 16х10 мм – для учебных станков;
  • 20х12 мм;
  • 20х16;
  • 40х25 – изготавливается под заказ для крупногабаритных станков.

Подрезной отогнутый резец внешне очень схож с упорным проходным инструментом. Рабочая часть также представлена пластиной из твердых сплавов, но имеет треугольную форму с одной закругленной стороной. При помощи данного типа режущего инструмента можно обрабатывать заготовку поперек оси ее вращения, выставляя резец перпендикулярно.

Производители также выпускают подрезные упорные резцы, которые имеют значительно меньший спрос на строительном рынке, что связано с ограниченной сферой использования инструмента.

Державки для резца подрезного ГОСТ 18877-73 бывают таких размеров: 16х10 мм, 25х16 мм, 32х20 мм. Стоимость отогнутого резца в среднем составит 250 руб.

Статья по теме:


Выбор мощности двигателя. Создание станка на основе дрели. Техника безопасности, модификации.

Резьбовые резцы

В комплект инструментов для станка токарного обязательно должны входить резьбовые резцы на токарный станок. Режущая пластина изделий изготавливается из твердоплавких металлов. Существует два варианта инструмента: для нарезания наружной и внутренней резьбы. Первый тип используется для болтов, шпилек и других металлических деталей, у которых необходимо нарезать резьбу. Пластина резца по форме напоминает наконечник копья. При помощи инструмента можно получить метрическую или дюймовую резьбу, что зависит от конструкции резца. Резцы представлены в таких типоразмерах: 16х10, 25х16, 32х20 мм. Цена изделия составляет 120 руб.

Для нарезания резьбы резцом на токарном станке в полости заготовки используется второй вариант резьбового инструмента. Несмотря на то, что по форме режущей пластины резец схож с предыдущим вариантом, он имеет совершенно иной вид. Благодаря конструктивным особенностям инструмента, его можно использовать для отверстий большого диаметра. Производители выпускают изделия таких типоразмеров: 16х16х150 мм, 20х20х200 мм, 25х25х300 мм.

Державка резца имеет квадратную форму, значения величин которой определяются первыми цифрами обозначений. Третья цифра указывает на длину державки. Именно это значение определяет глубину, на которую во внутренней полости заготовки можно нарезать резьбу. Купить инструмент можно за 270 руб.

Важно! Данный тип резцов можно использовать на токарных станках, оснащенных особым приспособлением под названием гитара.

Расточные резцы

Существует два типа расточных резцов: для расточки глухих или сквозных отверстий. Если в металлической заготовке нет отверстия, необходимо использовать первый вариант инструмента. Пластина расточного резца имеет треугольную форму, как у подрезного, но ее режущая часть имеет изгиб. Такая конструкция позволяет подвести резец с торца заготовки. В этом случае растачивание детали будет происходить от центра, углубляясь внутрь тела заготовки и выполняя отверстие необходимого диаметра.

Для таких резцов державки могут иметь такие размеры: 16х16х170 мм, 20х20х200 мм, 25х25х300 мм. От размера данного элемента резца будет зависеть максимальный диаметр отверстия в металлической заготовке. Купить резцы по металлу для токарного станка можно за 200 руб.

Важно! Растачивать можно отверстия любого диаметра, главное правильно подобрать типоразмер резца.

Для создания сквозных отверстий в теле заготовки используется второй вариант расточного инструмента. Предварительно необходимо в металлической детали просверлить отверстие большого диаметра. Только потом можно приступить к его растачиванию до нужного размера. Конструкция инструмента характеризуется прямой пластиной, которая не имеет выступов, что позволяет резцу легко проникать внутрь заранее просверленной трубки в теле заготовки, и, проходя насквозь, растачивать ее.

Во время обработки сквозного отверстия будет сниматься слой металла, равный величине отгиба рабочей части резца. Стоимость инструмента составляет в среднем 190 руб. Резцы расточные для сквозных отверстий имеют такие же типоразмеры, как и в предыдущем варианте, что соответствует ГОСТ 18882-73.

Универсальные резцы для токарных станков

Универсальный инструмент еще может называться сборным. Это связано с возможностью к одной державке крепить разные пластины определенным образом, что дает возможность обрабатывать металлическую заготовку различной формы под любым углом. Державки универсальных резцов могут быть различными. Данный тип резца применяется крайне редко, поэтому выпускается в ограниченном количестве. Встретить его в магазине можно по достаточно высокой цене в отличие от остальных вариантов инструмента.

Данный тип инструмента может быть использован для станков с ЧПУ или специальных станков. Универсальный резец используется для расточки глухих и сквозных отверстий, контурного точения и других специализированных работ. Купить резцы для токарного станка можно по цене 350 руб.

Правила заточки резцов по металлу для токарного станка

Чтобы обеспечить эффективную, качественную и точную обработку заготовки на токарном станке необходимо регулярно производить заточку резцов. Это способствует приданию рабочей части необходимой формы и получению угла с требуемым значением.

Токарных резцов по металлу

Важно! Только инструмент, выполненный в виде пластины одноразовой твердосплавной, не нуждается в затачивании.

На промышленных предприятиях заточка резцов осуществляется на станке со специальными приспособлениями, что соответствует классификации токарного станка. Чтобы выполнить процедуру в домашних условиях можно воспользоваться одной из методик. Заточка инструмента может выполняться при помощи химических реактивов, с использованием точильных кругов.

Полезный совет! При помощи абразивного круга, который может быть установлен на токарном станке, можно выполнить качественную и эффективную заточку резцов, придав инструменту определенные геометрические параметры.

При выборе точильного круга следует обращать внимание на материал изготовления рабочей части элемента. Если затачиванию подлежит твердосплавный резец, необходимо выбирать круг характерного зеленого цвета из карборунда. Для изделий из быстрорежущей или углеродистой стали лучше использовать круг из корунда.

Заточку можно производить без охлаждения или с охлаждением. Второй вариант является более приемлемым. В этом случае холодная вода должна подаваться в то место, где соприкасается токарный резец с точильным кругом. Если охлаждение не применяется, после окончания процедуры резец нельзя резко охлаждать, что приведет к растрескиванию режущей части.

При выполнении затачивания важно строго соблюдать последовательность действий. Вначале на точильном круге обрабатывается задняя основная поверхность, затем задняя вспомогательная, и в конце передняя. Последний этап заточки состоит из обработки вершины резца, придав ее требуемый радиус закругления.

Полезный совет! При выполнении процедуры затачивания резец следует постоянно медленно передвигать по кругу, стараясь не слишком его прижимать. Это необходимо, чтобы поверхность равномерно изнашивалась, а режущая кромка получалась максимально ровной.

Среди широкого ассортимента токарных резцов по металлу можно выбрать наиболее подходящий вариант, который справится с поставленной задачей. Для этого следует определиться, какой металл будет подлежать обработке, какие операции должны быть выполнены, важно ли соблюдать геометрические параметры конечного изделия или необходимо обеспечить высококачественную обработку поверхности. Только после этого следует приступить к выбору инструмента.

Резец состоит из державки I (рис. 1.2), которая служит для установки резца на станке, и режущей ча­сти (лезвия) И. На режущей части выделяют следующие конструктивные элементы: переднюю поверх­ность лезвия 7, по которой сходит стружка; главную заднюю поверхность лезвия 2, которая обращена к поверхности резания; вспомогательную заднюю поверхность лезвия 3, которая обращена к обработан­ной поверхности; главную режущую кромку 4, которая образована пересечением передней и главной задней поверхностей лезвия (выполняет основную работу резания); вспомогательную режущую кромку 5, которая образована пересечением передней и вспомогательной задней поверхностей лезвия; вершину лезвия 6, образованную пересечением главной и вспомогательной режущих кромок.

Рис. 1.2

1.8. Геометрические параметры режущей части резца

К геометрическим параметрам режущей части резца относят углы заточки лезвия и радиус при вер­шине резца.

Геометрические параметры резца рассматривают в статике относительно двух координатных плос­костей: основной и плоскости резания (рис. 1.3).

Основная плоскость Р у - плоскость, параллельная направлениям подач токарного станка (5 пр, 5 П) и проходящая через главную режущую кромку резца.

Плоскость резания Р п - плоскость, проходящая касательно к главной режущей кромке лезвия и перпендикулярно основной плоскости.

Для определения действительных значений углов заточки резца проведем главную секущую плос­кость Р т.

Главная секущая плоскость Р х - плоскость, проходящая перпендикулярно к линии пересечения основной плоскости и плоскости резания. Это сечение показано на рис. 1.4.

К основным углам заточки относят:

передний угол у - угол между передней поверхностью лезвия и основной плоскостью (измеряют в главной секущей плоскости);

главный задний угол а - угол между главной задней поверхностью лезвия и плоскостью резания (измеряют в главной секущей плоскости);

главный угол в плане ср - угол между проекцией главной режущей кромки на основную плоскость и направлением движения продольной подачи;

вспомогательный угол в плане (р 2 - угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением, обратным движению продольной подачи.

Геометрические параметры режущей части резца выбирают в зависимости от обрабатываемого ма­териала и других условий обработки.

Для измерения углов заточки резца используют специальное устройство -угломер.

Угломер (рис. 1.5) состоит из основания 1 , вертикальной стойки 2 и шкального устройства 3 с измери­тельной линейкой 4 , которая может поворачиваться вокруг оси 6. Шкальное устройство направляется по стойке и при необходимости может поворачиваться вокруг оси стойки, фиксируясь в любом положении по высоте. Положение поворотной измерительной линейки фиксируется винтом 5.

Рис. 1.5

При измерении углов у и а измерительную линейку устанавливают перпендикулярно к главному режущему лезвию резца. При измерении переднего угла у линейка 4 совмещается с передней поверхно­стью резца, а при измерении главного заднего угла а - с главной задней поверхностью. По показаниям шкалы угломера определяют значение углов.

Вопросы для самопроверки

    Перечислите формообразующие движения.

    Что называют главным движением резания?

    Что называют движением подачи?

    Что называют режимом обработки (режимом резания)?

    Что. изображают на схеме обработки?

    В каких единицах измеряют скорость главного движения резания и подачи при точении?

    Какова главная конструктивная особенность любого режущего инструмента?

    Назовите части, элементы и геометрические параметры токарного проходного прямого резца.

Т е м а 2. ОБРАБОТКА ЗАГОТОВОК ТОЧЕНИЕМ

Цель - изучение технологических возможностей точения, основных узлов токарно-винторезного станка и их назначения, инструментов для выполнения разных видов токарных работ; получение прак­тических навыков наладки станка и работы на нем.

    Назначение и область применения точения

    Технологическое оборудование

    Установка заготовок

    Инструмент для токарных работ

    Кинематические методы формообразования поверхностей точением

Вопросы для самопроверки

    Назначение и область применения точения

Точение - вид лезвийной обработки резанием с вращательным главным движением резания, сооб­щаемым заготовке, и поступательным движением подачи, сообщаемым инструменту. Точением обраба­тывают поверхности тел вращения на всех типах токарных станков. Точением получают наружные и внутренние цилиндрические, конические, фасонные, резьбовые, торцовые поверхности, а также коль­цевые канавки разного вида.

Основные виды токарных работ: обтачивание (точение наружной поверхности), растачивание (точе­ние внутренней поверхности), подрезание торца, снятие фаски, отрезание, резьбонарезание, сверление, накатывание (см. тему 10) и др.

    Технологическое оборудование

Универсальный токарно-винторезный станок модели 1К62 показан на рис. 2.1. Станина 1 является базой для всех остальных узлов станка. В передней бабке 3 находится коробка скоростей, которая служит для изменения частоты вращения шпинделя - главного вала станка. На правом фланце шпинделя для закрепления заготовки и передачи на нее крутящего момента установлен патрон 15.

Коробка подач 2 позволяет изменять скорости вращения ходового вала 13 и ходового винта 12, что обеспечивает продольную и поперечную подачи режущего инструмента.

Суппорт 8 состоит из продольного 4, поперечного 7 и верхнего 6 суппортов, а также четырехпози­ционного резцедержателя 5. Суппорт 8 перемещается по направляющим 11 станины, что обеспечивает движение резца вдоль оси вращения заготовки. Поперечный суппорт перемещает резец по направляю­щим продольного суппорта перпендикулярно оси вращения заготовки. Между верхним и поперечным суппортами имеется поворотная плита, которая позволяет устанавливать верхний суппорт под углом к линии центров станка (линия, проходящая через ось вращения шпинделя и ось центра задней бабки 10).

В фартуке 14 смонтированы механизмы, которые преобразуют вращательное движение ходового ва­ла 13 (или ходового винта 12) в поступательное движение продольного и поперечного суппортов (про­дольное и поперечное движения подач). Ходовой винт 12 работает лишь при нарезании резьб резьбовы­ми резцами.

В корпусе задней бабки 10 в осевом направлении перемещается пиноль 9. В пиноли устанавливается центр с коническим хвостовиком, поддерживающий заготовку, или режущий (осевой) инструмент для обработки отверстий. Щиток 16 защищает работающего от летящей при резании стружки.

    Установка заготовок

Заготовки на станке устанавливают с помощью патронов или в центрах с поводковой планшайбой (рис. 2.2). Для закрепления заготовок, у которых отношение длины к их диаметру Ь/А < 4, применя­ют самоцентрирующие трехкулачковые (см. рис. 2.2, а), четырехкулачковые (несамоцентрирующие) и цанговые патроны.

Рис. 2.2

Заготовки с соотношением Ь/А > 4 устанавливают в центрах с поводковой планшайбой. В этом случае вращение со шпинделя на заготовку передается поводковой планшайбой с пальцем, закрепленной на фланце шпинделя станка (рис. 2.2, б), и поводковым хомутиком (см. рис. 2.2, в), закрепленным на заготовке.

Центры устанавливают в конические отверстия шпинделя станка и пиноли задней бабки. По кон­струкции и назначению различают следующие типы центров (рис. 2.3):

    упорный (см. рис. 2.3, а) - используют при обтачивании цилиндрических поверхностей;

    срезанный (полуцентр) (см. рис. 2.3, б) - применяют для обработки торца заготовки;

    с шариковой опорой (см. рис. 2.3, в) - предназначен для обтачивания конической поверхности способом смещения задней бабки;

    обратный (см. рис. 2.3, г) - используют для установки заготовок малых диаметров (до 4 мм);

    вращающийся (см. рис. 2.3, б) - предназначен для установки заготовок с большим сечением сре­заемого слоя (когда в процессе резания возникают значительные силы резания), а также для обработки заготовок с высокой частотой вращения шпинделя.

Для закрепления в центрах на заготовке необходимо предусматривать стандартные центровые отвер­стия (рис. 2.3, е).

д

Рис. 2.3

При обработке нежестких заготовок {Ь/д, > 10) применяют люнеты, предназначенные для созда­ния дополнительной опоры в целях предотвращения прогиба под действием сил резания. Неподвижные люнеты устанавливают на направляющих станины, подвижные - на продольном суппорте.

    Инструмент для токарных работ

На токарных станках используют токарные резцы, осевой инструмент (сверла, зенкеры, развертки и другие инструменты, назначение и классификация которых рассмотрены при изучении темы 6), а также инструмент для обработки поверхностей без снятия стружки (см. тему 10).

Токарные резцы по назначению делятся на проходные, подрезные, отрезные, фасонные, расточные, контурные и др. В табл. 2.1 показаны основные типы токарных резцов.

Проходные резцы по конструкции подразделяют на прямые, упорные, отогнутые, а по расположению главной режущей кромки - на правые и левые. Режущая кромка правого проходного резца расположена так, что она может срезать с заготовки материал при перемещении резца справа налево, а левого про­ходного резца - слева направо. Проходные резцы применяют в основном для точения цилиндрических и конических поверхностей. Проходной отогнутый резец можно использовать для подрезания торца, а проходной упорный - для точения ступенчатого вала. Подрезные токарные резцы предназначены толь­ко для обработки торцовых поверхностей.

Отрезными резцами отрезают готовое изделие (деталь от заготовки). Фасонные резцы, предназна­ченные для обработки фасонных поверхностей, рассматриваются при изучении темы 3, а резьбовые - темы 4. Расточные резцы служат для растачивания сквозных и глухих отверстий в заготовках (отливках или поковках), имеющих отверстия; в сплошных заготовках отверстия получают сверлением спиральны­ми сверлами, а затем обрабатывают зенкерами и развертками (см. тему 6), а также расточными резцами.

    Кинематические методы формообразования поверхностей точением

Поверхности вращения получают перемещением образующей линии по направляющей, которая представляет собой окружность (табл. 2.2). Образующая линия может быть любой формы и распола­гаться произвольно относительно направляющей.

При точении направляющая окружность всегда воспроизводится за счет вращательного движения заготовки, а образующая линия воспроизводится перемещением инструмента. Для формообразования точением используют два кинематических метода: следов и копирования или их сочетание (например, при нарезании резьбы).

При обработке по методу следов образующая воспроизводится траекторией вершины токарного рез­ца при его движении относительно заготовки (см. табл. 2.2) по прямой линии.

При обработке по методу копирования образующая повторяет форму и размеры главной режущей кромки инструмента на обрабатываемой поверхности заготовки.

Способом копирования обрабатывают короткие поверхности деталей любой формы. Способ следов применяют для точения поверхностей вращения любой формы без ограничения длины обработки.

    Какие виды работ выполняют на токарных станках?

    Какие движения заготовки и инструмента используют при формообразовании поверхностей точе­нием?

    Поясните сущность кинематических методов формообразования следов и копирования.

    Перечислите основные узлы токарно-винторезного станка.

    Какие типы инструментов используют при токарной обработке?

    Перечислите способы закрепления заготовок и приспособления, применяемые для этой цели.

ТемаЗ. ОБРАБОТКА КОНИЧЕСКИХ И ФАСОННЫХ ПОВЕРХНОСТЕЙ

Цель - изучение технологических возможностей способов обработки конических и фасонных по­верхностей на токарно-винторезном станке, используемых режущих инструментов; приобретение навы­ков наладки станка и самостоятельной работы на нем.

    Способы обработки конических поверхностей

    Режущий инструмент

    Характеристика способов обработки конических поверхностей

    Обработка фасонных поверхностей Вопросы для самопроверки

    Способы обработки конических поверхностей

Основные геометрические параметры конуса (рис. 3.1): В и (1 - диаметры оснований конуса, мм; I - длина конуса (рас­стояние между основаниями), мм; а - угол уклона конуса, град; 2а - угол конуса, град.

Обработка конических поверхностей точением на токарно-винторезных станках обеспечивается вращением за­готовки (главное движение резания В г ) и перемещением ин­струмента (движение подачи Вд). В зависимости от способа подача может быть продольной, поперечной, наклонной (табл. 3.1). При одновременном равномерном движении резца па­раллельно и перпендикулярно оси вращения заготовки также будет формироваться коническая поверхность. Этот способ используют на токарных станках с числовым программным управлением (ЧПУ).

Таблица 3.1

обработки

конических

поверхностей

Вид конической поверхности

Параметры конуса

Способ установки заготовки

Вид подачи

1, мм

Широким резцом

Наружные

Внутренние

Трехкулачковый

Продольная или поперечная

Смещением зад­ней бабки

Наружные

Любая (в пределах расстояния между центрами станка)

В шариковых цен­трах

Продольная

Поворотом верх­него суппорта

Наружные

Внутренние

Не более длины хода верхней ка­ретки суппорта

Трехкулачковый

Наклонная (пода­ча резца вручную)

С использованием копирной линейки

Наружные

Внутренние

Любая (в пределах длины линейки)

Трехкулачковый патрон или в центрах

Наклонная (сло­жение продольной и поперечной)

Коническими зен­керами или раз­вертками

Внутренние

Любая (в пределах длины инструмен­та)

Трехкулачковый

Продольная

    Режущий инструмент

Наружные конические поверхности обрабатывают проходными резцами, внутренние - расточны­ми (см. тему 2). Чтобы получить конические отверстия, в сплошной заготовке предварительно сверлят цилиндрическое отверстие. Затем в зависимости от размера и требуемой точности его обрабатывают зенковками, зенкерами, развертками (см. тему 6), а также расточными резцами.

    Характеристика способов обработки конических поверхностей

Широким резцом. Формообразование конических поверхностей широким резцом (рис. 3.2) осуще­ствляется методом копирования. Резец устанавливают в резцедержателе так, чтобы главный угол в плане <р был равен углу уклона конуса а. Длина главной режущей кромки лезвия должна быть на 1... 3 мм боль­ше длины образующей конической поверхности. Резцу сообщают движение подачи в поперечном или продольном направлении. Способ наиболее широко используют для снятия фасок.

Поворотом верхнего суппорта . Формообразование конических поверхностей поворотом верхнего суппорта (рис. 3.3) осуществляется методом следов. Верхний суппорт поворачивают под углом а к линии центров станка. Движение подачи Вд н (наклонная подача) задают резцу вручную вращением рукоятки /. Ось вращения заготовки совпадает с линией центров станка.

С использованиер копирной линейки. Формообразование конических поверхностей с использо­ванием копирной линейки (рис. 3.4) осуществляется методом следов. К станине станка крепят плиту 1 с копирной линейкой 2, по которой перемещается ползун 3, соединенный с поперечным суппортом станка 5 тягой 4. При перемещении продольного суппорта резец, установленный в резцедержателе на суппорте 5, получает два движения: продольное от продольного суппорта и поперечное от копирной линейки 2. В результате сложения двух движений подач резец перемещается вдоль образующей обрабатываемой по­верхности под углом а к линии центров станка. Угол поворота линейки, соответствующий углу уклона конуса, задают по делениям на плите 1. Этот способ обеспечивает высокую точность обработки.

Смещением задней бабки в поперечном направлении. Формообразование конических поверхно­стей смещением задней бабки в поперечном направлении (рис. 3.5) осуществляется методом следов. Заготовку устанавливают в центрах под углом а к линии центров станка так, чтобы ее ось вращения совпадала с осью конической обрабатываемой поверхности. Для этого заднюю бабку станка смещают в поперечном направлении по ее направляющим на величину Н = 11% а, где I - длина конуса. При этом образующая конической поверхности будет параллельна линии центров станка. Обработку проводят, ис­пользуя движение подачи резца в продольном направлении. Способ не обеспечивает высокую точность обработки.

Рис. 3.4

Рис. 3.5

Коническим зенкером или разверткой. Формообразование коническим зенкером или разверткой осуществляется методом следов. В этом случае инструмент закрепляют в пиноли задней бабки. От ма­ховика задней бабки инструмент получает (вручную) движение подачи в продольном направлении.

    Обработка фасонных поверхностей

К фасонным поверхностям относят поверхности, образующая которых может иметь любую форму, отличную от прямой линии. Фасонные поверхности тел вращения обрабатывают точением.

Фасонные поверхности длиной не более 50 мм обрабатывают специальными фасонными резцами, профиль которых определяет форму образующей. Формообразование поверхности осуществляется ме­тодом копирования. При этом режущий инструмент получает поперечное движение подачи.

По конструкции фасонные резцы подразделяют на следую­щие типы:

Круглые и призматические фасонные резцы закрепляют в рез­цедержателе в специальных державках, причем круглый резец устанавливают выше линии центров станка на величину к (см. рис. 3.7).

Длинные фасонные поверхности обрабатывают проходны­ми резцами с помощью фасонного копира, который аналоги­чен копирной линейке для обработки конических поверхностей (рис. 3.9). Формообразование поверхности осуществляется мето­дом следов.

При перемещении суппорта в продольном направлении Б $ П р резец получает движение в поперечном направлении от ко­пира. В результате сложения двух этих движений формируется фасонная поверхность заготовки.

Обработку фасонных поверхностей можно выполнить контурными резцами (см. тему 2, табл. 2.1) на токарных станках с ЧПУ.

Рис. 3.7

Вопросы для самопроверки

    Какими способами получают наружные конические поверхности на токарно-винторезном станке?

    Какими способами можно обработать на токарно-винторезном станке внутреннюю коническую поверхность?

Рис. 3.9

    Каким способом обрабатывают наружную коническую поверхность с углом конуса при вершине 60° и длиной образующей 100 мм?

    Какие инструменты используют для обработки наружной и внутренней конических поверхностей?

    Назовите способы обработки фасонных поверхностей и применяемый инструмент.

    Какими методами формообразования получают конические и фасонные поверхности точением?

Т е м а 4. РЕЗЬБОНАРЕЗАНИЕ

Цель - изучение технологических возможностей способов нарезания резьб на токарно-винторезном станке, применяемого резьбонарезного инструмента; получение практических навыков наладки стан­ка на нарезание резьбы и самостоятельной работы на нем.

    Характеристика резьбонарезания. Виды и назначение резьбы

    Кинематика формообразования резьбы

    Кинематическая схема токарно-винторезного станка модели 16К20

    Наладка станка на нарезание резьбы Вопросы для самопроверки

    1. Характеристика резьбонарезания. Виды и назначение резьбы

Резьбонарезаше - вид лезвийной обработки резанием, заключающийся в образовании резьбы. Резьбой называют винтовую поверхность определенного профиля, образованную на наружной или внутренней поверхности заготовки. При этом заготовка представляет собой тело вращения (цилиндри­ческой или конической формы).

Рис. 4.1

Резьбы различают по следующим признакам:

    по расположению - наружные и внутренние;

    по профилю - треугольные (рис. 4.1, а, б), трапецеидальные (рис. 4.1, в), прямоугольные (рис. 4.1, г), упорные (рис. 4.1, д) и круглые (рис. 4.1, е);

    по шагу - метрические (шаг Р задается в мм), дюймовые (шаг Р задается числом ниток на дюйм; 1 дюйм = 25,4 мм) и модульные - шаг резьбы Р = пт, где т - модуль зубчатого колеса, мм

(см. тему 8). Метрическая резьба имеет треугольный профиль с углом при вершине, равным 60°, дюймо­вая резьба - 55°, модульная резьба имеет трапецеидальный профиль с углом при вершине, равным 40°;

    по числу винтовых канавок - однозаходные и многозаходные;

    по направлению винтовых канавок - правые и левые;

    по назначению - крепежные и ходовые.

Для получения неподвижных разъемных соединений применяют крепежные резьбы (треугольного профиля). Метрическую резьбу нарезают на крепежных деталях (винт, болт, гайка и др.) и на мелких ходовых винтах, дюймовую -- в трубных соединениях. Для получения подвижных соединений приме­няют ходовую резьбу. Прямоугольную и трапецеидальную резьбы используют в ходовых винтах станков и других механизмах. Круглую резьбу применяют в шариковых винтовых передачах; упорную - в дом­кратах и винтовых прессах; модульную - в червячных винтовых передачах.

      Кинематика формообразования резьбы

Резьбонарезание осуществляют сочетанием двух кинематических методов: копирования и следов (см. тему 2, табл. 2.2).

Профиль резьбы создается копированием профиля режущей части инструмента, а винтовая линия образуется по методу следов при сочетании вращательного движения заготовки (главное движение ре­зания Р) г) и поступательного движения резца (продольная подача Дд- пр) вдоль ее оси. Эти движения необходимо точно согласовать: за один оборот заготовки инструмент должен переместиться на шаг на­резаемой однозаходной резьбы Р н (одна винтовая линия на заготовке) или ход многозаходной резьбы (ход резьбы равен произведению шага Р н многозаходной резьбы на число заходов К). Данное условие обеспечивается кинематической связью шпинделя станка и ходового винта (рис. 4.2).

Р х - та.- ходгтт) штш Р и ■> ите тгрез&щШ резьбы к" - чпе.т шх<м)т резьбы

Рис. 4.2

На токарно-винторезных станках резьбу можно нарезать различными инструментами: резьбовыми резцами, метчиками, плашками и др.

Резьбонарезание токарными резьбовыми резцами является универсальным способом, позволяющим нарезать резьбу любого вида.

Схемы нарезания наружной (а ) и внутренней (б) резьбы резьбовыми резцами показаны на рис. 4.3.

Метчик и плашка используются для нарезания резьбы треугольного профиля (рис. 4.4). При нареза­нии резьбы плашкой (см. рис. 4.4, а) или метчиком (рис. 4.4, б) настройка станка ограничивается установ­кой заданной частоты вращения заготовки. Метчик и плашку устанавливают в специальных держателях. В начальный момент инструмент получает принудительную продольную подачу, которая выполняется вручную, на длину двух-трех резьбовых ниток. Дальнейшее перемещение инструмента происходит за счет самозавинчивания.

Рис. 4.4

      Кинематическая схема токарно-винторезного станка модели 16К20

На станке можно нарезать все виды резьб, рассмотренные выше. При нарезании резьбы резьбовым резцом в станке используют цепь главного движения и винторезную цепь, а при нарезании метчиком и плашкой - только цепь главного движения, так как подача инструмента осуществляется самозавинчи- ванием.

На рис. 4.5 показана часть кинематической схемы станка, участвующей в передаче главного дви­жения резания на заготовку, а на рис. 4.6 - часть кинематической схемы, обеспечивающей движение подачи инструменту при нарезании резьбы.

Рис. 4.5

Рис. 4.6

Цепь главного движения (см. рис. 4.5) задает вращательное движение шпинделю станка (вал VI). От электродвигателя М (ЛГ = 10 кВт, п = 1460 мин -1) через клиноременную передачу и коробку скоростей шпиндель может получить 24 различных значения частоты вращения в диапазоне 12,5... 1600 мин -1 (табл. 4.1) и при этом иметь прямое и обратное вращение.

Винторезная цепь (цепь продольной подачи) согласует вращательное движение заготовки и посту­пательное перемещение резьбового резца вдоль оси заготовки так, чтобы за один оборот заготовки ре­зец переместился на шаг (если резьба однозаходная) или на ход (если резьба многозаходная). Началь­ным звеном этой цепи является шпиндель станка, далее движение идет через коробку подач. Конечным звеном является ходовой винт станка с шагом Р х - 12 мм (см. рис. 4.2). Настройку на шаг нареза­емой резьбы проводят с помощью гитары сменных зубчатых колес (К, Ь, М, У) и коробки подач (см. рис. 4.6).

Таблица 4.1

Положение рукоятки

Частота вращения шпинделя при передаточном отношении перебора скоростей, об/мин

Уравнение кинематического баланса винторезной цепи имеет вид

60 30 25 К М. п 60 " 25 " 45 " Т " ~

где г к. п - передаточное отношение коробки подач. Это уравнение используется при выводе расчетных формул по подбору сменных колес гитары для резьб с шагом Р н , равным табличному Р Т или отличаю­щимся от него.

Таблица 4.2

п шп, об/мин

Значение шага Р т метрической резьбы, мм, при положении рукояток коробки подач (см. станок)

Коробка подач (см. рис. 4.6) имеет две основные кинематические цепи. Одна цепь служит для наре­зания дюймовых резьб. При этом движение на ходовой винт передается, когда муфты Мг, Мз, М 4 и Ме выключены, а муфта М5 включена:

28 38 25 / 30 35 28\ 30 18

Пвал1Х ‘ 28 ’ 34 " 30 \ И 48’ 28’ 35 у 33 ’ 45

Другая цепь предназначена для нарезания метрических и модульных резьб. При этом муфты М2 и Мб выключены, а муфты М3, М4 и М5 включены:

28 30 /42 28 35\ 18 / 28\ 15

п В ал1Х " 28 " 25 \ 30’ 35 5 28) 45 35) 48

При нарезании метрических и дюймовых резьб устанавливают сменные зубчатые колеса гитары

Т " N ~ 86 ’ 64’

а при нарезании модульных резьб

К М _ 60 86 Т ‘ N “ 73 " 36*

При нарезании резьб с шагом Р н, отличающимся от табличного Р т , сменные зубчатые колеса гитары подбирают расчетным путем. Подбор колес проводят по заранее выбранному значению передаточного отношения коробки подач (примем передаточное отношение коробки подач равным единице).

      Наладка станка на нарезание резьбы

Наладку станка на резьбонарезание осуществляют в следующем порядке:

    п = и-НЮО-60/^мин -1 , где V - заданная скорость резания, м/с; <7 - диаметр заготовки, мм. Полученное значение п корректи­руем по табл. 4.1;

    по табл. 4.2 определяем соответствие заданного шага нарезаемой резьбы табличному значению;

    если заданный шаг соответствует табличному, то нарезать резьбу можно без специальной настрой­ки, пользуясь указаниями на положение рукояток коробки подач, находящимися на станке;

    если заданный шаг не соответствует табличному (см. табл. 4.2), то для нарезания резьбы необхо­димо выполнить специальную настройку, применяя расчетную формулу для определения передаточного отношения гитары сменных колес.

Например, для метрической резьбы расчетная формула имеет вид

К М __ 5 Рп Т " лГ “ 8 ~Р~ Т "

где Р н - шаг нарезаемой резьбы, Р г - табличное значение шага, ближайшее к шагу нарезаемой резьбы.

По результатам расчета сменные колеса выбирают из следующего набора: 36, 40, 44, 45, 46, 48, 50, 52, 54, 56, 57, 60, 64, 65, 66, 70, 72, 73, 75, 80, 86, 90, 127 (все зубчатые колеса имеют одинаковый модуль т = 2 мм).

Нарезание резьбы в зависимости от шага Р н проводят за несколько проходов.

Различают четные и нечетные резьбы. Четной называют резьбу, у которой отношение шага (хода) к шагу ходового винта станка (или наоборот) является целым числом, а нечетной - ту, у которой указан­ное отношение дробное. Это разделение определяет приемы настройки станка, которые используются при нарезании резьбы.

При нарезании четной резьбы по окончании прохода резец перемещают в исходное положение вруч­ную или механически (ускоренно) при разомкнутой разъемной гайке ходового винта. Кинематическая связь шпинделя и ходового винта обеспечивает возможность включения разъемной гайки ходового вин­та при любом положении резца относительно резьбы и гарантирует точное попадание его в нарезаемую канавку резьбы.

При нарезании нечетной резьбы после каждого рабочего прохода резец отводят от заготовки в попе­речном направлении, переключают суппорт на обратный ход и, не размыкая разъемную гайку, отводят резец в исходное положение. Затем резец устанавливают на заданную глубину резания и выполняют следующий проход. >

Рассмотрим наладку станка на примере.

Пример.

Требуется нарезать метрическую резьбу с шагом Р н = 5,5 мм. Наружный диаметр заготовки Р) - 40 мм. Материал заготовки - конструкционная сталь. Материал резца - быстрорежущая сталь. Скорость резания у = 0,33 м/с.

Решение".

    по заданной скорости резания рассчитываем частоту вращения шпинделя:

п шп = 1000 60 уЦпИ) = 1000 60 0,33/(3,14 40) = 159 мин" 1 .

Полученное значение п шп = 159 мин -1 корректируем по табл. 4.1. Для наладки станка принимаем ближайшее к расчетному табличное значение - п шп = 160 мин -1 ;

К М_ 5 РЪ _ 5 55 _ 5 55 _ 5 И _ 50 66 Ь N ~ 8 ‘ Р т ~ 8 " 6 ” 8 ’ 60 ~ 8 " 12 “ 80 " 72"

Числа зубьев сменных колес выбираем из набора сменных колес: р ис> 4.7

К = 50, Ь = 80, М = 66, N = 72.

Проверяем условие сцепляемости подобранных сменных зубчатых колес (рис. 4.7):

К + Ь>М + 15;

^ 2 ’

М + N > Ь + 15.

Из конструктивных соображений зубчатые колеса гитары должны иметь следующие значения числа зубьев: К < 88, N < 73; К + Ь + М > 260.

    подобранные расчетным путем сменные колеса устанавливаем на станок. При этом коробку подач настраиваем с помощью рукояток на шаг Р т = 6 мм.

Вопросы для самопроверки

    Какие виды резьб можно нарезать на токарно-винторезных станках?

    Какую резьбу называют четной и какую нечетной?

    Назовите приемы настройки станка на нарезание четной и нечетной резьб.

    Какой режущий инструмент используют при нарезании наружных и внутренних резьб?

    Опишите кинематику нарезания резьб плашками и метчиками.

    Укажите назначение цепи главного движения резания.

    Укажите назначение цепи подачи при нарезании резьб.

    Как осуществляют настройку станка на нарезание резьбы с шагом, равным табличному (см. табл. 4.2)?

    Как осуществляют настройку станка при нарезании резьб с шагом, отличающимся от табличного?

    Как подбирают сменные зубчатые колеса гитары?

Т е м а 5. МНОГОИНСТРУМЕНТАЛЬНАЯ ОБРАБОТКА ЗАГОТОВОК

Цель - изучение технологических возможностей многоинструментальной обработки на токарно­револьверном станке, основных узлов станка и их назначения; приобретение практических навыков на­ладки станка и самостоятельной работы на нем.

    Характеристика многоинструментальной обработки

    Назначение и особенности конструкции токарно-револьверного станка

    Основные узлы токарно-револьверного станка модели 1К341

    Установка заготовок и режущих инструментов

    Наладка станка

Вопросы для самопроверки

При работе на токарных станках применяют различные режущие инструменты: резцы, сверла, зенкеры, развертки, метчики, плашки, фасонный инструмент и др. Токарные резцы являются наиболее распространенным инструментом, они применяются для обработки плоскостей, цилиндрических и фасонных поверхностей, нарезания резьбы и т. д. Элементы резца показаны на рисунке. Резец состоит из головки (рабочей части) и стержня, служащего для закрепления резца в резцедержателе. Передней поверхностью резца называют поверхность, по которой сходит стружка. Задними (главной и вспомогательной) называют поверхности, обращенные к обрабатываемой детали. Главная режущая кромка выполняет основную работу резания. Она образуется пересечением передней и главной задней поверхностей резца. Вспомогательная режущая кромка образуется пересечением передней и вспомогательной задней поверхностей. Вершиной резца является место пересечения главной и вспомогательной режущих кромок.

Для определения углов резца установлены понятия: плоскость резания и основная плоскость. Плоскостью резания называют плоскость, касательную к поверхности резания и проходящую через главную режущую кромку резца (смотри рисунок). Основной плоскостью называют плоскость, параллельную направлению продольной и поперечной подач; она совпадает с нижней опорной поверхностью резца. Углы резца разделяют на главные и вспомогательные (смотри рисунок). Главные углы резца измеряют в главной секущей плоскости, т. е. плоскости, перпендикулярной проекции главной режущей кромки на основную плоскость.

Главным задним углом α называется угол между главной задней поверхностью резца и плоскостью резания. Углом заострения β называется угол между передней и главной задней поверхностями резца. Главным передним углом γ называется угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания и проходящей через главную режущую кромку резца. Сумма углов α+β+γ=90 градусов. Углом резания δ называется угол между передней поверхностью резца и плоскостью резания. Главным углом в плане φ называется угол между проекцией главной режущей кромки на основную плоскость и направлением подачи. Вспомогательным углом в плане φ1 называется угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением подачи. Углом при вершине в плане ε называется угол между проекциями главной и вспомогательной режущих кромок на основную плоскость. Вспомогательным задним углом α1 называется угол между вспомогательной задней поверхностью и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно основной плоскости. Углом наклона главной режущей кромки λ называется угол между главной режущей кромкой и плоскостью, проходящей через вершину резца параллельно основной плоскости. Резцы классифицируются: по направлению подачи - на правые и левые (правые резцы на токарном стане работают при подаче справа налево, т. е. перемещаются к передней бабке станка); по конструкции головки - на прямые, отогнутые и оттянутые (смотри рисунок);


Резцы: а - прямые, б - отогнутые, в - оттянутые

по роду материала - из быстрорежущей стали, твердого сплава и т. д.; по способу изготовления - на цельные и составные (при использовании дорогостоящих режущих материалов резцы изготовляют составными: головка - из инструментального материала, а стержень - из конструкционной углеродистой стали; наибольшее распространение получили составные резцы с пластинами из твердого сплава, которые припаиваются или крепятся механически); по сечению стержня - на прямоугольные, круглые и квадратные; по виду обработки - на проходные, подрезные, отрезные, прорезные, расточные, фасонные, резьбонарезные и др. (смотри рисунок).


Токарные резцы для различных видов обработки:

а - наружное обтачивание проходным отогнутым резцом, б - наружное обтачивание прямым проходным резцом, в - обтачивание с подрезанием уступа под прямым углом, г - прорезание канавки, д - обтачивание радиусной галтели, е - растачивание отверстия, ж, з, и - нарезание резьбы наружной, внутренней и специальной