Режимы резания титана. Особенности фрезерования различных материалов. Регулировка параметров обработки

По сравнению с другими металлами, механическая обработка титана нуждается в более высоком требовании и выполняется в больших ограничениях. Сплавы из титана обладают некоторыми свойствами, которые способны значительно влиять как на процесс резания, так и на материал, который подвергается резанию. Если режим и инструмент выбраны правильно, а так же надежно закреплена заготовка, процесс металлообработки титана . будет высокоэффективным. Так же можно избежать многих проблем, которые часто возникают при обработке титана , просто нужно преодолеть влияние, которое оказывает титан на процесс металлообработки .

    Многие свойства, которые придают титану статус привлекательного материала для изготовления деталей, оказывают значительный эффект на его обрабатываемость, а именно:
  • имеет более низкую упругость и легче подвергается упругости, в отличие от стали;
  • высокая прочность по отношению к своему весу, причем его плотность составляет 60% плотности стали;
  • низкая теплопроводность;
  • более высокая стойкость к коррозии, чем нержавеющая сталь;

Все свойства перечисленные выше означают, что титан обладает высокими и концентрированными силами при его обработке. Это часто производит вибрацию при обработке и ведет к быстрому износу режущей детали. Кроме этого, титан плохо проводит тепло. Поэтому обработка титана требует от качества инструмента высокой стойкости.

Трудности механической обработки титана

Считается, что титан трудно поддается обработке, но это типично для современных станков, инструментов и методов обработки. Частично трудности в - это новая область, в которой пока еще не набрано хорошее количество опыта. Титан так же может казаться более трудным в обработке по сравнению с другими металлами, такими как: чугун или низколегированные стали. Механическую обработку титана , следует выполнять при других подачах и скоростях, нежели в сравнении с другими металлами, но все же он может быть довольно легок в обработке. Если деталь титана, жестко зажата на станке, в хорошем состоянии и оборудованным специальным шпинделем конусной формы ISO 50, с коротким вылетом инструмента – проблем возникать не должно, при условии что режущий инструмент выбран правильно.

Но стабильные и идеальные условия не всегда присутствуют при фрезеровании. Кроме этого, многие детали из титана имеют сложную форму узкими, мелкими или глубокими и большими карманами, тонкими фасками и стенками. Для правильной и успешной обработки этих форм неизбежно потребуется инструмент более длинного размера, что быстрее может вести к деформации инструмента. Да и потенциальные проблемы с вибрации часто возникают при обработке металла.

Как бороться с вибрацией и теплом при механической обработке титана

: Большинство станков оснащены шпинделями с ISO 40 конусом. Из-за интенсивной эксплуатации этих станков они не долго остаются в новом состоянии. Обработка титана , как правило, включает в себя контурную обработку, разрезание канавок или обработку кромок, а все эти операции способны приводить к вибрации. Поэтому необходимо принимать меры для ее предотвращения, по возможность повышение мощности закрепления детали. Главным способом решения данной проблемы, является многоступенчатое крепление заготовок, при котором заготовки располагают ближе к шпинделю, что позволяет ослабить вибрацию.
Из-за того, что материал титана сохраняет прочность и твердость при высоких температурах, на режущую кромку воздействует большая нагрузка. При этом в месте резания вырабатывается большое количество тепла, а это опасность к деформации. Поэтому большое значение при обработке титана приобретает правильный выбор геометрия сменной пластинки и марка сплава. Решением этой проблемы является пластины с покрытием PVD, которые способны существенно повысить эффективность.

Необходимые условия для расчетов режима резания титана при обработке металла:

Точность торцевого и рационального биения инструментов очень важно при механической обработке титана . К примеру, если пластина неверно установлена в корпусе фрезы, это приведет к быстрому повреждению режущих кромок. Хотя предпочтение отдается геометрии с положительным передним углом, инструмент с немного отрицательным передним углом способен вести обработку при более высоких подачах, которые достигают 0.5 мм. на зуб. В таком случае, значительно важна надежность закрепления заготовки и жесткость станка.
Минимальная применяемая подача при фрезеровании титана обычно составляет 0.1 мм. на зуб. Так же можно уменьшить вращения шпинделя в целях получения исходной скорости подачи. Неправильно выбранная частота вращения шпинделя может сократить стойкость на 90% при минимальной подачи на зуб.
Как только стабильные условия обеспечиваются, подачу и частоту вращения шпинделя можно увеличить для достижения оптимальной эффективности. Еще одним способ является уменьшение пластин из фрезы, либо выбор фрезы с наиболее меньшим количеством пластин.

Производство НПП РУСМЕТ обрабатывает цветной металл
позволяет резать титан, разрезать алюминий и его сплавы, орабатывать латунь, изготавливать из меди и других цветных металлов и их сплавов металлоизделия на станках с ЧПУ.
Важно знать, что , самый эффективный способ металлообработки , заготовительного производства и

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ ПРИ РЕЗАНИИ ТИТАНОВЫХ СПЛАВОВ

Упруго-пластическое деформирование при резании метал-лов весьма сложно. Оно находится во взаимной связи с дру-гими факторами и явлениями, сопутствующими процессу реза-ния. Поэтому более полная характеристика физических основ резания титановых сплавов может быть получена лишь при комплексном исследовании тепловых явлений, деформаций по-верхностных слоев, сил резания, износа режущего инструмента и качества обработанной поверхности.

ТЕПЛОВЫЕ ЯВЛЕНИЯ В ПРОЦЕССЕ РЕЗАНИЯ

Тепло, возникающее в процессе резания, оказывает влияние на состояние, слоя под обработанной поверхностью, шерохо-ватость поверхности, точность обработки, а также на износ и стойкость режущего инструмента. Под влиянием тепла изме-няются условия трения на передней и задней поверхностях ин-струмента, деформация срезаемого слоя, наростообразование и другие явления.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ.

Исследованию был под-вергнут высокопрочный титановый сплав отечественного произ-водства ВТЗ-1. Химический состав, механические и теплофизи-ческие свойства заготовки этого сплава взяты в пределах, ука-занных в табл. 1 и 2. Выбор сплава ВТЗ-1 обусловлен тем, что он имеет (α +β)-структуру, т. е. занимает среднее положение между а- и β-сплавами, поэтому полученные при исследовании результаты являются наиболее типичными. Кроме того, сплав ВТЗ-1 получил наибольшее распространение.

Для получения сравнительных данных были исследованы также сплавы -на основе железа (ЗОХГСА) и никеля (ХН70ВМТЮ). Заготовки этих сплавов находились в состоянии поставки. Химический состав и физико-механические свойства их удовлетворяли техническим условиям.

ВТЗ-1 почти в 2 раза превышает температуру, возникающую при обработке стали 30ХГСА. Она близка к температуре, раз-вивающейся при точении в тех же условиях жаропрочного сплава ХН70ВМТЮ, процесс резания которого характеризуется весьма напряженным тепловым режимом. Сравнение получен-ных результатов с данными, приведенными в работе , пока-зывает, что температура при резании титанового сплава ВТЗ-1 в среднем в 2 раза выше температуры резания стали 40Х и в 3—4 раза выше температуры, возникающей при обработке алюминиевых сплавов. Это свидетельствует о том, что резание титановых сплавов характеризуется весьма высокими темпера-турами, физическая сущность возникновения которых изложена ниже.

АНАЛИЗ ТЕМПЕРАТУРЫ.

При резании пластичных материалов, к которым относится технический титан и его сплавы, работы упругих деформаций и диспергирования незначительны, поэтому основными источниками тепловыделения следует считать пла-стическую деформацию и трение.

Титановые сплавы по сравнению со сплавами на основе никеля и железа, как было показано выше, характеризуются меньшей пластической деформацией. Подобное заключение следует также из сравнения коэффициен-тов усадки стружки титановых и никелевых сплавов (рис. 19). Следовательно, можно предполо-жить, что при резании титановых сплавов выделяется меньшее ко-личество тепла, чем при обработ-ке сталей и сплавов на основе никеля.

Согласно приведенным данным интенсивность выделения тепла в деталь при обработке титановых сплавов ниже, чем при. обработке сплавов на основе никеля со сталью 45 выделении тепла у тита-нового сплава ВТ2 при точении сви-детельствуют и кривые на рис. 20. Можно было ожидать, что при реза-нии температура в деформированной зоне титановых сплавов должна быть ниже, чем у сталей. Однако рассмот-ренные ранее результаты эксперимен-тального исследования температуры резания показывают обратное. Темпе-ратура резания титанового сплава (см. рис. 17, б) достигает 800° С уже при υ = 40 м/мин, s = 0,17 мм/об и t — = 1,5 мм; при резании же стали 45, по данным исследования , анало-гичная температура возникает при значительно более высоких параметрах режима резания, а именно: v= 100 м/мин, s = = 0,29 мм/об и t=2 мм.

Таким образом, высокой температуре резания титановых сплавов, значительно превосходящей температуру три анало-гичной обработке сталей, соответствует сравнительно неболь-шое количество выделившегося тепла, меньшее, чем при резании в тех же условиях сплавов на основе железа и никеля.

ИЗНОС РЕЖУЩЕГО ИНСТРУМЕНТА ПРИ ПОЛУЧИСТОВОЙ И ЧИСТОВОЙ ОБРАБОТКЕ.

При чистовом и полулистовом непрерывном точении исследуемых титановых сплавов резцами, оснащенными пла-стинками из однокарбидного твердого сплава, процесс износа может быть представлен в следующем виде. В начальный пе-риод резания на задней поверхности резца, вдоль режущей кромки, наблюдается появление характерных штрихов износа, являющихся результатом трения между соответствующим кон-тактным участком резца и поверхностями обрабатываемой за-готовки. Износ по передней поверхности при этом представляет след сходящей стружки и имеет вид лунки, более или менее оформленной в зависимости от условий обработки (режима ре-зания и марки твердого сплава). При дальнейшем резании происходит развитие износа как по передней, так и особенно по задней поверхности (рис. 57, д—ж; 58, д). На передней поверх-ности развитие износа проявляется в окончательном оформлении лунки, увеличении ее размеров, сопровождающемся устранением перемычки между лункой и режущей кромкой (рис. 57,а), в возникновении местного прорыва кромки (рис. 57,6 и г) и, на-конец, в разрушении лунки, при котором по ее наружному кон-туру выкрашивается кромка (рис. 58,а), вследствие чего передний угол в зоне контакта оказывается отрицательным. Так как при выкрошенной режущей кромке требуемое качество об-работанной поверхности и. прилегающего к ней слоя не может быть гарантировано, то при чистовой обработке деталей из титановых сплавов износ передней поверхности, определяющий необходимость переточки резцов, следует характеризовать ста-дией исчезновения перемычки или началом образования местного прорыва кромки. Этим этапам износа по передней поверхно-сти, как показывают наблюдения и результаты исследования (рис. 57,6 и г), соответствует износ по задней поверхности, равный 0,3—0,4 мм. При получистовом точении, основываясь на результатах проведенных исследований остаточных напря-жений первого рода и наклепа, а также исходя из требований точности и чистоты обработки, оказывается возможным допу-щение большего износа по передней поверхности, определяе-мого прорывом перемычки и наличием выкрашиваний режущей кромки в зоне контактных поверхностей. Такому затуплению соответствует износ по задней поверхности, равный 0,4—0,5 мм (рис. 58, д).

Согласно приведенным данным (рис. 59—62) износ по зад-ней поверхности указанных резцов по мере увеличения продол-жительности резания характеризуется закономерным измене-нием, возрастанием от узкой, не всегда четко оформленной ленточки штрихов до явно выраженной фаски износа, величина которой не превосходит указанного значения, установленного в качестве критерия за-тупления. Дальнейшее резание сопровождается наиболее ин-тенсивным развитием износа. При этом происходит не только

истирание, но и выкрашивание кромки по наружному контуру разрушенной лунки (см. рис. 58, а) —наиболее характерное для резцов, оснащенных пластинками из твер-дых сплавов ВКЗМ, ВК4 и ВК6М (см. рис. 58,б и в), и приводящее их к катастрофическому износу по задней поверх-ности в виде отслаиваний и сколов (см. рис. 58, г).

Износ резцов, оснащенных пластинками из двух- и трехкарбидных твердых сплавов, по внешнему виду (см. рис. 57, а; 58, е и ж) аналогичен износу, наблюдаемому у резцов с пластинками из сплавов ВК2, ВКЗМ, ВК4, ВК6, ВК6М, ВК8, ВК8Та, ВК12Та. Однако процесс износа у этих резцов протекает значительно интенсивнее. Это заключение следует из сравнения фотографий резцов (см. рис. 57, α, в; 58, д, е, ж) и кривых износа (см. рис. 60, а, б).

Резцы из быстрорежущей стали раз-личных марок (Р18, Р9Ф5 и др.), по-добно рассмотренным, характеризуются износом, происходящим на передней и задней поверхностях, причем преобла-дание износа на задней поверхности выражено более харак-терно (рис. 63). При средних скоростях резания для резцов с пластинками из сплавов ВК2 и,ВК4 быстрорежущие резцы подвергаются настолько значительному износу, что не могут быть сравнимы с указанными резцами, оснащенными пластинками из твердых сплавов. Поэтому быст-рорежущий инструмент находит применение лишь при работе на небольших скоростях резания, в среднем не превышающих 10—15 м/мин (см. рис. 61,6), причем в тех случаях, когда не представляется возможным изготовить режущий инструмент, оснащенный твердым сплавом. Проведенное исследование износа ин-струмента, применяемого при выполнении этих видов обработки, показало, что общей особенностью затупления сверл и раз-верток, оснащенных пластинками, из твердого сплава ВК8, а также быстрорежущих сверл, разверток, метчиков и протяжек является преобладание износа по задней поверхности (рис. 64). Однако у быстрорежущих инструментов наряду со значительным износом по задней поверхности происходит быстрое притупление режущих кромок, в то время как у сверл, разверток и протяжек, оснащенных пластинками из твердого сплава ВК8, режущие кромки практически остаются острыми и при наличии износа по задней поверхности. Притупление кромок приводит не только к увеличению износа по задней поверхности, но и к потере (уменьшению) размера развернутого отверстия или протяну-того паза. Указанное явление связано с низким модулем упру-гости титановых сплавов и, следовательно, значительной склон-ностью их к упругому деформированию. Вследствие этого воз-росшие при обработке затупленным инструментом силы резания вызывают существенные упругие деформации обрабатываемой детали.

Токарная обработка титана, обработка титана, режимы обработки титана, режимы токарной обработки титана, выбор инструмента для токарной обработки титана, стратегии обработки титана. производительность обработки титана. | Проектная компания Высь ">

Чтобы снизить лункообразование, проточины необходимо выбирать инструмент с меньшим углом в плане или пластины круглой формы.


На производительность обработки титановых сплавов большое влияние оказывают: главный угол в плане, подача и толщина стружки.

Ввиду малых скоростей при обработке титана наблюдается высокое трение инструмента, что вызывает большое выделение тепла. Так при выборе малых радиусов при вершине режущей пластины этот радиус просто «сгорает», поэтому выбираем радиусы побольше. Контролировать температуру в зоне резания можно скоростью, толщиной стружки и глубиной резания.

Обязательно применение СОЖ, и желательно под высоким давлением. Необходимо точно направить подачу СОЖ в зону резания. Используя СОЖ под давлением (80 бар) можно повысить скорость резания на 20%, стойкость инструмента на 50%, а также улучшить стружкодробление.

Для обработки титановых сплавов не используйте инструменты на основе керамики.

Выбор инструмента для наружной токарной обработки

Предварительная обработка:

— Квадратные пластины с большим радиусом вершины, возможно назначить большую глубину резания.

— Круглые пластины больших размеров.

— Использовать стружколомы для тяжелой обработки, стружколомы снижающие силу резания, стружколомы с улучшенным контролем стружкообразования.

— Используйте твердые сплавы без покрытия.

Промежуточная обработка:

— Круглые пластины (имеется возможность назначить высокие скорости резания, высокую подачу, присутствует меньший износ, небольшая глубина резания.)

— Использовать сплавы без покрытия, или как вариант PVD-покрытие для обеспечения сочетания прочность-износостойкость.

— Снижать подачу при увеличении глубины.

— Выбирать радиус пластины меньше, чем радиус скругления на детали, так не придется занижать радиус.

— На криволинейных участках снижайте подачу на 50%.

— Трохоидальное точение – первый выбор.

— Если невозможно трохоидальное точение используйте врезание под углом.

Окончательная обработка:

— Выбирайте пластины с шлифованными режущими кромками, они повышают стойкость и снижают силы резания.

— Предпочтение имеет острая геометрия, но также учитывайте требование стабильности при выборе геометрии и формы пластины.

— Для тонкостенных деталей выбирайте главный угол в плане Kr=45 градусов и радиус при вершине не более 3хap, острую геометрию с небольшим радиусом округления режущей кромки. Используйте относительно низкую подачу 0,15 мм/об.

— Для жестких деталей выбирайте большой радиус при вершине и большой радиус округления режущей кромки.

— Выбирайте сплав без покрытия, или с PVD-покрытием и острой кромкой для снижения сил резания и повышения скорости резания, или поликристаллический алмаз (PCD) для обеспечения высокой стойкости и скорости резания. По сравнению с твердым сплавом без покрытия PCD может увеличить скорость в 2 раза

2. Для снижения проточины режущей кромки также используйте постепенное плавное врезание , по сути получается обкатка профиля при этом исключая обработку фаски. Так на режущей кромке один участок воспринимает нагрузку при врезании, а другой нагрузку установившегося резания. Фаску можно выполнить отдельным инструментом с движением инструмента под 90 градусов.

3. Врезание под углом или различные глубины резания при многопроходной обработке также помогает минимизировать проточины. При этом не рекомендуется выбирать глубину резания менее 0,25 мм, иначе будет происходить выкрашивание режущей кромки.

4. Выбирайте глубину резания 15% от диаметра пластины или 15% от радиуса не круглой пластины . Максимальная глубина резания не должна превышать 25% диаметра режущей пластины, чтобы не было большой величины контакта и вибраций. Обработку с большой глубиной резания рекомендуется проводить после удаления корки, т.е. резание большой глубиной должно быть без корки.

Режимы токарной обработки титана

Для обработки титана характерны малые скорости резания при большой подаче и глубине резания, интенсивное охлаждение.

Предварительная обработка (тяжелая черновая обработка, удаление корки и т.д.): ap=3-10 мм, fn=0.3-0.8 мм, Vc=25 м/мин.

Промежуточная обработка (черновая, получистовая обработка без корки, профильная обработка и т.д.): ap=0.5-4 мм, fn=0.2-0.5 мм, Vc=40-80 м/мин.

Окончательная обработка (получистовая, чистовая обработка, финишная обработка и т.д.): ap=0,25-0,5 мм, fn=0.1-0.4 мм, Vc=80-120 м/мин.

Выбор инструмента для внутреннего растачивания

Предварительная обработка:
— Главный угол в плане 90 град, но не менее 75 град. Это снизит отжатие оправки и вибрации.
— Используйте твердый сплав без покрытия.
— Используйте максимально возможный диаметр оправки и минимальный вылет.

Промежуточная обработка:
— Главный угол в плане 93 град, угол при вершине 55 град.
— Стружколом обеспечивающий низкие силы резания.


Окончательная обработка:
— Позитивные пластины с задним углом и острая геометрия для снижения сил резания и меньшего отжатия инструмента.
— Шлифованная пластина, угол при вершине 55 град, главный угол в плане 93 град
— Твердый сплав без покрытия.
— Максимально возможный диаметр оправки, минимальный вылет
— При необходимости антивибрационный инструмент.

Механическая резка, обработка титана и титаносодержащих сплавов предъявляет очень высокие требования к оборудованию и накладывает определенные ограничения на использование стандартных технологий. Для титана характерен значительный коэффициент отношения прочности к весу в сочетании с небольшим модулем упругости. По этой причине материал при механическом воздействии генерирует концентрированные силы резания, в свою очередь, вырабатывающие сильные вибрации. Неудовлетворительная теплопроводность провоцирует образование избыточной тепловой энергии в зоне реза, что может привести к деформационному упрочению готовых изделий. При механической резке, обработке титановых сплавов важную роль играют ресурсные (в особенности усталостные) характеристики, напрямую зависящие от свойств поверхностного слоя. На степень обрабатываемости материала влияет не только его химическая составляющая, но и особенности микроструктуры. Наибольшую сложность представляет резка и сверление грубых пластинчатых сплавов с газонасыщенным верхним слоем. Трудоемкость процесса в 3-4 раза превосходит аналогичные показатели сплавов из углеродистых сталей, в 5-7 раз – показатели алюминия. Для снижения энергозатрат необходимо соблюдение следующих условий:

  • применение качественного режущего инструмента, изготовленного из твердых сплавов либо прочной стали;
  • использование минимальных оборотов станка;
  • непрерывная подача охлаждающих жидких составов.

Виды механической обработки титана

Среди способов механической обработки титана выделяют резку, фрезеровку, шлифовку и сверление.

Резка титана

Уровень прочностных показателей титаносодержащих сплавов крайне осложняет их резку. Из-за высокого коэффициента соотношения предела текучести к длительности сопротивления разрыву (примерно 0,85-0,95) механическая резка титана требует значительных энергозатрат. Недостаточная теплопроводность провоцирует стремительное и неравномерное повышение температуры в зоне реза, что усложняет процесс охлаждения. Адгезия способствует накоплению стружки на режущей кромке, что увеличивает силу трения. Прилипание отработанных частиц материала в местах прямого контакта меняет заданную геометрию режущих приспособлений. Любые отклонения от заданной конфигурации провоцируют дальнейшее увеличение прилагаемых усилий и повышение уровня нагрева. Под влиянием высоких температур запускается процесс окисления - образовавшая пленка значительно ухудшает эксплуатационные свойства изделий. Уровень нагрева заготовки зависит от трех факторов (по убыванию значимости):
  • скорость резания,
  • сила подачи,
  • глубина реза.
Для поддержания оптимальной температуры в зоне реза используют водородное легирование. Увеличенное содержание водорода в сплаве позволяет понизить силу реза и в несколько раз увеличить износоустойчивость твердосплавной фрезы (показатель зависит от природы сплава и выбранной технологии резки). Добавление водорода дает возможность сократить сроки обработки в два раза, не потеряв при этом в качестве. Азотирование или оксидирование деталей создает на поверхности сплава тончайшую пленку, способную препятствовать задиранию слоев и образованию избыточной стружки.

Фрезерование титана

Фрезерование считают самой трудоемкой операцией при изготовлении деталей из титановых сплавов. Механическая обработка титана предполагает использование тяжелых фрезеровочных станков высокой мощности. Различают несколько видов усиленных фрез:
  1. Вогнутые или выпуклые фасонные.
  2. Сборные (с регулируемым углом).
  3. Концевые (с возможностью подводки под определенным углом).

Сверление титана

Процесс сверления титана сопровождается активным налипанием мельчайшей стружки на рабочую поверхность инструмента, что провоцирует засорение отводящих каналов сверла. В итоге сопротивление материала усиливается, режущая кромка быстро выходит из строя. Во избежание поломок требуется проводить периодическое очищение инструментария и использовать оборудование из твердых металлов.

Шлифовка титана

Специфические свойства титановых сплавов затрудняют финишную обработку. Под влиянием силы трения связи в оксидной пленке быстро разрушаются; в точках соприкосновения с оборудованием происходит активное налипание образовавшейся стружки на режущую кромку. Титановые сплавы склонны к появлению прижогов, образованию значимых дефектов на поверхности, высокому уровню остаточного напряжения и излишнему внутреннему растяжению. Эти факторы негативно влияют на усталостные характеристики готового изделия. Ухудшению качества деталей способствуют и другие свойства сплава, к примеру значительное повышение упругой деформации при сравнительно невысоком модуле упругости. По вышеперечисленным причинам шлифование титановых заготовок проводят исключительно на пониженных оборотах станка, задействуя специальные режимы. Для повышения качества детали упрочняют пластическим деформированием. На заключительном этапе осуществляют строгую проверку на наличие прижогов и других дефектов. Альтернативой шлифования служит лезвийная или абразивная обработка. Для окончательной шлифовки поверхности титана используют непрерывную абразивную ленту либо высокопрочные кремниевые круги.

Оптимизация механической резки, обработки титана

Титан - один из самых прочных металлов, поэтому его обработка подразумевает применение мощной техники и высокорезультативных технологий. Для решения сложных задач чаще всего используют мультизадачное оборудование - современные станки, способные объединить несколько операций. Обрабатывающие центры работают по принципам максимальной цикличности производства. Последовательную обработку каждой детали проводят при помощи разнопрофильных насадок, установленных на одном станке. Таким образом достигается оптимальная скорость проведения работы. Для механической резки, обработки титана подходят станки, адаптированные под манипуляции с вязкими и твердыми металлами. Они нацелены на снижение уровня возможных вибраций. Для уменьшения нежелательных эффектов проводят мероприятия по усилению жесткости крепления заготовки (как вариант - деталь крепят на небольшом расстоянии от шпинделя). Немаловажную роль играет качество выбранного инструментария и точное соблюдение его геометрических параметров. В промышленных масштабах используют фрезы и резцы из быстрорежущих сталей или твердых сплавов. Большое значение имеет точность торцевого и радиального биения инструмента: неправильная установка пластин, низкие допуски или высокая степень износа могут оказать негативное влияние на качество обработки. В процессе обработки титана обязательно используют галлоидосодержащие смазывающе-охлаждающие жидкости (СОЖ). Активное орошение обрабатываемых деталей понижает степень нагрева в месте реза, повышает производительность и увеличивает срок службы применяемых сверл и фрез. СОЖ образует на поверхности титановых деталей солевую корку, при нагревании вызывающую коррозию. Чтобы избежать разрушения сплава, применяют облагораживающее травление. Во время этой процедуры снимают поверхностный слой толщиной в сотые доли миллиметра. В процессе финишных операций применение охлаждающих растворов не требуется.

На сегодняшний день выделяется группа металлов, для которых необходимо создать специальные условия, прежде чем приступить к работе с ними. Обработка титана относится к этой категории работ. Все сложности и особенности процесса связаны с тем, что этот материал характеризуется повышенной твердостью.

Описание

Титан характеризуется тем, что он очень прочный, имеет серебристый цвет, а также обладает огромной устойчивостью к процессу ржавления. Из-за того, что на поверхности металла образуется пленка TiO 2 , он обладает хорошей устойчивостью ко всем внешним воздействиям. Негативно на свойствах титана может сказаться лишь влияние веществ, которые содержат в своем составе щелочь. При контакте с этими химическими веществами сырье теряет свои прочностные характеристики.

Из-за того, что продукт обладает повышенной прочностью, при токарной обработке титана приходится использовать инструмент из сверхпрочного сплава, а также создать другие особые условия при работе на токарном станке с ЧПУ.

Что нужно учитывать при обработке?

При необходимости работы с титаном обязательно нужно учитывать следующие свойства:

  • Первое - это налипание. При обработке титана с использованием токарного станка создается высокая температура, из-за которой материал начинает плавиться и прилипать к режущему инструменту.
  • Во время обработки также возникает мелкая дисперсная пыль. Она может детонировать, а потому во время работы очень важно строго соблюдать все правила техники безопасности.
  • Для того чтобы качественно осуществить процесс резки такого сверхпрочного металла, необходим инструмент, который может обеспечить подходящий режим.
  • Специально подбирать инструмент для резки приходится еще и потому, что титан характеризуется низкой теплопроводностью.

После того как обработка титана заканчивается, готовая деталь обычно подогревается, после чего ей дают остыть на открытом воздухе. Таким образом создают защитную пленку на поверхности материала, о которой было написано выше.

Классификация способов обработки

Для того чтобы осуществить резку такого сырья, необходим специальный инструмент, а также токарный станок с ЧПУ. Сам процесс разделяется на несколько операций, каждая из которых осуществляется по собственной технологии.

Что касается самих операций, то они могут быть основными, промежуточными или предварительными.

При обработке титана на станках нужно помнить, что в это время возникает вибрация. Для того чтобы частично решить данную проблему, можно крепить заготовку многоступенчатым образом, а также делать это как можно ближе к шпинделю. Чтобы уменьшить влияние температуры на процесс обработки, рекомендуется использовать резцы из мелкозернистого твердого сплава без покрытия и пластин со специальным PVD. Здесь стоит обратить внимание на то, что во время обработки титана резанием от 85 до 90% всей энергии будет превращаться в тепловую, которая будет поглощаться стружкой, обрабатываемой заготовкой, резцами и жидкостью, которая предназначена для охлаждения. Обычно температура в зоне работ достигает 1000-1100 градусов по Цельсию.

Регулировка параметров обработки

Во время обработки такого сверхпрочного материала необходимо учитывать три основных параметра:

  • угол фиксации рабочего инструмента;
  • размерность подачи;
  • скорость резания.

Если регулировать данные параметры, то с их помощью можно изменить и температуру обработки. При разных режимах обработки наблюдаются и разные параметры данных характеристик.

Для предварительной обработки со срезом верхнего слоя до 10 мм допускается припуск в 1 мм. Для работы таком режиме обычно выставляются следующие параметры. Во-первых, угол фиксации от 3 до 10 мм, во-вторых, размерность подачи от 0,3 до 0,8 мм, а выставляет 25 м/мин.

Промежуточный вариант обработки титана предполагает срез верхнего слоя от 0,5 до 4 мм, а также образование ровного слоя припуска 1 мм. Угол фиксации 0,5-4 мм, размерность подачи 0,2-0,5 мм, скорость подачи 40-80 м/мин.

Основной вариант обработки - это снятие слоя 0,2-0,5 мм, а также удаление припусков. Скорость работы 80-120 м/мин, угол фиксации 0,25-0,5 мм, а размерность подачи 0,1-0,4 мм.

Здесь также очень важно отметить, что титана на таком оборудовании всегда проводится только при наличии подачи специальной охлаждающей эмульсии. Субстанция подается под давлением на рабочий инструмент. Это необходимо для того, чтобы создать нормальный температурный режим работы.

Инструмент для обработки

Требования, которые предъявляются к инструменту для обработки материала, довольно высоки. Чаще всего обработка титана и сплавов производится при использовании резцов, у которых имеются съемные головки, а устанавливаются они на станки с ЧПУ. Во время эксплуатации рабочий инструмент подвергается абразивному, адгезийному и диффузному изнашиванию. Особое внимание стоит уделить диффузному изнашиванию, так как в это время происходит процесс растворения и режущего материала, и заготовки из титана. Наиболее активно эти процессы протекают, если температура находится в пределах от 900 до 1200 градусов по Цельсию.

Требования к инструменту

Особенность обработки титана заключается еще и в том, что необходимо подбирать рабочий инструмент в зависимости от того, какой режим работы выбран.

Для работы в предварительном режиме чаще всего используются пластины с круглой или же квадратной формой марки iC19. Изготавливаются данные пластины из специального сплава, который маркируется как Н13А и не имеет покрытия.

Для того чтобы успешно обрабатывать титан промежуточным способом, необходимо уже использовать только круглые пластины из того же сплава Н13А или же из сплава GC1155 с покрытие PDV.

Для наиболее ответственного, основного способа обработки применяются круглые насадки со шлифовальными режущими кромками, которые изготавливаются из сплавов Н13А, GC 1105, CD 10.

Важно добавить, что при обработке на токарных станках с ЧПУ допускается самое минимальное отклонение от формы детали, которая была указана в техническом задании. Чаще всего элементы, изготовленные из такого сплава, не имеют отклонений от нормы вовсе.

Основная проблема при обработке

Основная проблема, с которой сталкиваются при обработке этого сырья, это налипание и задирание на инструмент. Из-за этого термическая обработка титана очень сложна. Кроме того, достаточно много проблем доставляет и тот факт, что металл отличается очень низкой теплопроводностью. Из-за того, что другие металлы сопротивляются нагреву гораздо слабее, при контакте с титаном чаще всего они образуют сплав. Это является основной причиной быстрого износа инструментов. Для того чтобы несколько уменьшить задирание и налипание, а также отвести часть выделяемого тепла, специалисты рекомендуют делать следующее:

  • во-первых, нужно обязательно использовать охлаждающую жидкость;
  • во-вторых, при проведении заточки заготовок, к примеру, должны использоваться инструменты из таких же сверхпрочных материалов;
  • в-третьих, при обработке сырья при помощи резцов скорость значительно понижают, чтобы снизить нагрев.

Оксидирование и азотирование титана

Начать стоит с азотирования титана, так как этот вид обработки гораздо сложнее, чем оксидирование. Технологический процесс выглядит следующим образом. Изделие из титана нагревают до 850-950 градусов по Цельсию, после чего деталь необходимо поместить в среду с чистым газообразным азотом на несколько суток. После этого на поверхности элемента образуется пленка из нитрида титана, благодаря химическим реакциям, которые будут протекать в течение этих суток. Если все прошло успешно, то на титане появится пленка золотистого оттенка, которая будет отличаться повышенной прочностью и стойкостью к истиранию.

Что касается оксидирования титана, то метод является очень распространенным и принадлежит, как и предыдущий, к термической обработке титана. Начало процесса ничем не отличается от азотирования, деталь нужно нагреть до температуры в 850 градусов по Цельсию. А вот процесс остывания происходит не постепенно и в газовой среде, а резко и с использованием жидкости. Таким образом можно получить пленку на поверхности титана, которая будет прочно с ним связана. Наличие такого типа пленок на поверхности приводит к увеличению прочности и стойкости к стиранию в 15-100 раз.

Соединение деталей

В некоторых случаях изделия из титана выступают частью большой конструкции. Это говорит о том, что возникает необходимость соединения разных материалов.

Для того чтобы соединять изделия из этого сырья используется четыре основных метода. Основной из них - это сварка, используется еще пайка, механический способ соединения, предполагающий использование заклепок и соединение при помощи болтового крепления.На сегодняшний день основной метод обработки для соединения изделий в одну конструкцию - это сварка в среде инертного газа или специальных бескислородных флюсов.

Что касается пайки, то этот метод применяется только в том случае, если сварка невозможна или же нецелесообразна. Данный процесс осложняется некоторыми химическими реакциями, которые возникают в результате пайки. Чтобы выполнить механическое соединение при помощи болтов или заклепок, придется также применить специальный материал.