Сварка точечная конденсаторная. Сварка. Основные виды сварки. Сварка различных металлов с сплавов Обозначение конденсаторной сварки

Контактная сварка – процесс создания монолитного сварного шва путем расплавления кромок свариваемых деталей электрическим током и последующей деформацией сжимающим усилием. Особое распространение технология получила в тяжелой промышленности и служит для беспрерывного производства однотипной продукции.

Данная технология является распространенной при серийном соединении тонколистового металла

Сегодня как минимум один аппарат контактной сварки имеется на каждом заводе, а все благодаря преимуществам технологии:

  • производительность – сварная точка создается не дольше 1 секунды;
  • высокая стабильность работы – однажды настроив устройство оно может работать долгое время без стороннего вмешательства, сохраняя качество работ;
  • низкие затраты на обслуживание – это касается расходных материалов, рабочим элементом служат контактные электроды;
  • возможность работы с машиной специалистов низкой квалификации.

Технология контактной сварки

Простая, на первый взгляд, технология контактной сварки состоит из ряда процедур, обязательных к выполнению. Достичь качественного соединения можно только в случае соблюдения всех технологических особенностей и требований процесса.

Сущность процесса

Для начала стоит разобраться, как работает данная система?

Суть электроконтактной сварки это два неразрывных физических процесса – нагрев и давление. При прохождении через зону соединения электрического тока выделяется тепло, которое служит для расплавления металла. Чтобы обеспечить достаточное выделение тепла сила тока должна достигать нескольких тысяч или даже десятков тысяч ампер. Одновременно с этим на деталь воздействует некоторое давление с одной или обеих сторон, при этом создается плотный шов без видимых и внутренних дефектов.

Процесс соединения связан с локальным нагревом заготовок с одновременным их прижатием

При правильной организации процесса сами детали практически не подвержены нагреву, так как их сопротивление минимально. По мере создания монолитного соединения сопротивление уменьшается, а вместе с тем и сила тока. Подверженные нагреву электроды сварочного аппарата охлаждаются внедренной технологией с применением воды.

Подготовка поверхностей

Существует множество технологий, которые позволяют обработать поверхность перед использованием контактной сварки. Сюда относят:

  • зачистку от грубых загрязнений;
  • обезжиривание;
  • снятие оксидной пленки;
  • сушку;
  • пассирование и нейтрализацию.

Порядок и сами технологии обуславливаются конкретным процессом и видом заготовок.

В целом, перед началом сваривания поверхность должна:

  • обеспечивать минимальное сопротивление между деталью и электродом;
  • обеспечивать равное сопротивление на всей протяженности контакта;
  • свариваемые детали должны иметь гладкие поверхности без выпуклостей и впадин.

Машины для контактной сварки

Оборудование для контактной сварки бывает:

  • неподвижным;
  • передвижным;
  • подвешенным или универсальным.

Разделяют сварки по роду тока на постоянного и переменного тока (трансформаторные, конденсаторные). По способам сваривания бывают точечные, шовные стыковые и рельефные, о которых мы поговорим чуть ниже.

Оборудование может быть как стационарным, так и переносным

Все сварочные устройства точечной сварки состоят из трех частей:

  • электросистемы;
  • механической части;
  • водяного охлаждения.

Электрическая часть отвечает за расплавление деталей, контроль циклов работы и отдыха, а также устанавливает текущие режимы. Механическая составляющая представляет собой пневматическую или гидравлическую систему с различными приводами. Если установлен только привод сжатия, то перед нами точечная разновидность, шовные имеют еще и ролики, а стыковые систему сжатия и осадки изделий. Водяное охлаждение состоит из первичного и вторичного контура, разводящих штуцеров, шлангов, вентилей и реле.

Электроды для контактной сварки

В данном случае электроды не только замыкают электрический контур, но и служат отводом тепла от сварного соединения, передают механическую нагрузку, в ряде случаев помогают передвигать заготовку (роликовые).

Размеры и форма электродов для контактной сварки различаются в зависимости от применяемого оборудования и свариваемого материала

Такое использование обуславливает ряд жестких требований, которым должны соответствовать электроды. Они должны выдерживать температуру свыше 600 градусов, давление до 5 кг/мм2. Именно поэтому их изготавливают из хромовой бронзы, хромциркониевой бронзы или кадмиевой бронзы. Но даже такие мощные сплавы не способны долго выдерживать описанные нагрузки и быстро выходят из строя, снижая качество работ. Размер, состав и другие характеристики электрода подбираются исходя из выбранного режима, типа сварки и толщины изделий.

Дефекты сварки и контроль качества

Как и при любой другой технологии, сварочные соединения должны подвергаться жесткому контролю, для выявления всевозможных дефектов.

Здесь применяются практически все и прежде всего – внешний осмотр. Однако, из-за прижатия деталей, выявить подобным способом бывает очень сложно, поэтому часть изготовленной продукции отбирается и проводится разрез деталей вдоль шва для выявления погрешностей. В случае обнаружения дефекта партия потенциально дефектной продукции отправляется на переработку, а аппарат калибруют.

Разновидности контактной сварки

Технология создания сварного пятна обуславливает разделение процесса на несколько видов:

Точечная контактная сварка

В данном случае сваривание происходит в одной или одновременно в нескольких точках. Прочность шва состоит из множества параметров.

Точечный способ является самым распространенным методом

В этом случае на качество работ влияет:

  • форма и размер электрода;
  • сила тока;
  • сила давления;
  • длительность работ и степень очистки поверхности.

Современные аппараты точечной сварки способны работать с эффективностью 600 сварных соединений в минуту. Подобная технология используется для соединения частей точной электроники, для соединения кузовных элементов автомобилей, самолетов, сельскохозяйственной техники и имеет еще множество других областей использования.

Рельефная сварка

Принцип работы одинаковый с точечной сваркой, но основное отличие заключается в том, что сам сварной шов и электрод имеют схожую, рельефную форму. Рельефность обеспечивается естественной формой деталей или созданием специальных штамповок. Как и точечная сварка, технология применяется практически повсеместно и служит дополняющей, способной сваривать рельефные детали. С ее помощью можно прикреплять кронштейны или опорные детали к плоским заготовкам.

Шовная сварка

Процесс многоточечной сварки, при которой несколько сварных соединений располагаются близко или с перекрытием, формируя единое монолитное соединение. Если между точками имеется перекрытие, то получается герметичный шов, при близком расположении точек шов не герметичен. Так как шов, с использованием расстояния между точками не отличается от созданного точечным швом, подобные аппараты используются редко.

В промышленности более популярным является перекрывающийся, герметичный шов, с помощью которого создают баки, бочки, баллоны и другие емкости.

Стыковая сварка

Здесь детали соединяют, прижимая друг к другу, а затем оплавляют всю плоскость контакта. Технология имеет свои разновидности и разделяется на несколько видов на основании типа металла, его толщины и нужного качества соединения.

Сварочный ток протекает через стык заготовок, расплавляет их и надежно соединяет

Самый простой способ – сварка сопротивлением, подходит для легкоплавких заготовок с малой площадью пятна контакта. Сварка с оплавлением и плавлением с подогревом подходит для более прочных металлов и огромного сечения. Таким способом сваривают части кораблей, якоря и тд.

Выше, описаны наиболее популярные и используемые, но есть и такие виды точечной сварки:

  • шовно-стыковая осуществляется вращающимся электродом с несколькими контактами для замыкания цепи, протягивая заготовку через такой аппарат можно получить негерметичный сплошной шов, состоящий из множества сварных точек;
  • рельефно-точечная деталь сваривается согласно текущего рельефа, однако шов состоит не из сплошного пятна контакта, а из многих точек;
  • по методу Игнатьева в котором сварочный ток протекает вдоль свариваемых частей, поэтому давление не влияет на нагрев изделия и его сваривание.

Обозначение контактной сварки на чертеже

Согласно существующего стандарта условных обозначений точечная сварка имеет следующее обозначение на чертежах:

  1. Сплошной шов. Видимый сплошной шов на общем плане чертежа отмечают основной линией, остальные конструктивные элементы основной тонкой линией. Скрытый сварной сплошной шов обозначен штриховой линией.
  2. Сварные точки. Видимые сварные соединения на общем чертеже отмечают символом “+”, а скрытые не отмечают вовсе.

От видимого, скрытого сплошного шва или видимой сварной точки идет специальная линия с выноской, на которой отмечаются вспомогательные условные обозначения, стандарты, буквенно-цифровые знаки и т.д. В обозначении присутствует буква “К – контактная и маленькая буква “т”-точечная, указывающие на метод выполнения сварки и ее разновидность. Швы, не имеющие обозначения, отмечают линиями без полок.

ГОСТ 15878-79 Регламентирует размеры и конструкции сварных соединений контактной сварки

Вся основная информация подается на линии выноске или под ней, в зависимости от обращенной стороны (лицевая или оборотная). Вся необходимая информация о шве берется из соответствующего ГОСТа, что указывается на сноске или дублируется в таблицу швов.

Конденсаторная сварка позволяет производить монтаж фурнитуры (шпилек, игл, и пр.) к металлическому основанию (значкам, орденам и пр.).

Материал крепежа может быть сталь (черная, нержавеющая, никелировання, омедненная и пр., латунь, алюминий, серебро, золото). Основным преимуществом конденсаторной сварки является возможность приварки крепежа к тонколистовой стали (менее 1 мм) без видимых следов сварки с обратной стороны металла. В процессе сварки не происходит ни нагрев деталей, ни их деформация. Еще одним преимуществом конденсаторной сварки является высокая производительность.

Скорость ограничивается лишь временем вставки привариваемого элемента в сварочный держатель, а сам процесс приварки занимает доли секунды. Количество сварок составляет 20-30 штук в минуту.

Для конденсаторной сварки надо использовать специальные иглы и шпильки. Они должны иметь циллиндрический выступ малых размеров (менее 1 мм) в основании. Этот выступ служит запалом.

Игла с фиксатором

Игла без фиксатора

Шпилька с резьбой

Соединение с помощью конденсаторной сварки является прочным. При работе на излом крепеж на отваливается.

Фиксация выводов электрохимической защиты (ЭХЗ)

Аппараты конденсаторной сварки FARADAY применяются для фиксации выводов электрохимической защиты (ЭХЗ) к основанию магистральных газовых и нефтяных трубопроводов. Конденсаторная сварка позволяет осуществлять приварку крепежных элементов (как правило, шпилек) к любому стальному основанию за короткое время (0,001-0,003 секунды), при очень небольшой глубине провара (примерно 0,3 мм). Прочность соединения при этом остается высокой - при нагрузках деформируется само тело крепежного элемента, а не место сварки. Сами шпильки могут быть выполнены из стали с покрытием (омеднение, никелирование и пр.) или нержавеющей стали. Особенностью крепежа для конденсаторной сварки является наличие запала (выступ в основании), который загорается при разряде батареи конденсаторов. Размеры шпилек для фиксации выводов ЭХЗ могут быть от М3 до М10. Сами шпильки могут иметь увеличенный фланец для обеспечения лучшего контакта выводов ЭХЗ. Источник питания - однофазная сеть. Также можно использовать установку FARADAY при подключении к генератору.

Одним из самых больших достоинств технологии является простота установки:

1. Сталь зачищается от окалины, ржавчины и грязи.

2. Прриварка шпилек конденсаторным разрядом.

3. Провидится монтаж выводов ЭХЗ.

Приварные шпильки бывают со специальным увеличенным фланцем, для лучшего контакта:

Видео процеса установки:

Звезды с аллеи чемпионов на курорте "Роза Хутор"

В 2016 году на горнолыжном курорте «Роза Хутор» появилась Аллея олимпийских чемпионов. Подробнее об этой новости по ссылке.

Изначально детали латунной звезды крепились к граниту при помощи двухкомпонентного эпоксидного клея. Спустя полгода детали отклеились и потребовалось изготовить альтернативное крепление. С обратной стороны к латунным деталям звезд были приварены стальные шпильки с помощью аппарата конденсаторной сварки FARADAY CD 1400.

Конденсаторная сварка обладает отличительной особенностью, а именно, провар минимален и отсутствуют следы повреждения с обратной стороны основания, что особенно важно при работе с металлом малой толщины. Переделка звезд происходила непосредственно на объекте. Далее латунные детали были закреплены на гранитной плите и в таком виде были установлены на набережной курорта.

Прочность приварки конденсаторной сварки, несмотря на минимальный уровень провара, очень высокая: при нагрузках происходит деформация самой шпильки, а не места сварки. Материал шпилек может быть различным - сталь, нержавейка, латунь, алюминий.

Монтаж счетчиков тепла с помощью конденсаторной сварки

Одной из областей, где применяется конденсаторная сварка, является установка счетчиков тепловой энергии на радиаторы отопления. Монтаж счетчика производится на две приваренные шпильки диаметром М3 на требуемом расстоянии друг от друга. Краску перед сваркой необходимо зачистить до металла в тех точках, где будет происходить приварка крепежных элементов. Приварка шпилек конденсаторной сваркой используется для монтажа счетчиков тепла на панельные радиаторы и некоторые типы конвекторов. Необходимость применения именно конденсаторой сварки объясняется малым уровнем провара при установке крепежных элементов, что невозможно обеспечить другими видами сварки.

Монтаж изоляции с помощью конденсаторной сварки

Конденсаторная сварка часто применяется для монтажа изоляции на металлическую поверхность. В качестве изоляции может быть практически любой материал: любая рулонная изоляция, пенопласт, шумопоглощающий материал и проч. Преимуществами конденсаторной сварки являются быстрота и надежность крепления. Во многих случаях конденсаторная сварка является единственным способом избежать повреждения (прожигания насквозь) тонкостенных металлических конструкций, поскольку уровень оплавления минимален, что бывает важно для вентиляционного оборудования.

Наиболее распространенным способом является приварка изоляционных гвоздей с последующим закреплением изоляции фиксирующими шайбами. Монтаж происходит в 3 этапа:

1. На металлическую основу приваривается изоляционный гвоздь, имеющий специальный выступ и служащий запалом пи конденсаторной сварке. Гвозди бывают 2 и 3 мм в диаметре и до 200 мм в длину. В зависимости от толщины и плотности изоляционного материала на 1 квадратный
метр потребуется 1-5 гвоздей.

2. На приваренные изоляционные гвозди нанизывается подходящий изоляционный материал.

3. Изоляция фиксируется шайбами-фиксаторами, которые нанизываются на приваренные гвозди. Шайбы выполнены из пружинной стали, как правило, оцинкованной. Их достаточно насадить на гвоздь на 2-3 мм для прочного
закрепления. Шайбы могут быть выполнены как с пластиковым колпачком, так и без него. Выступающая часть гвоздя может быть отрезана или загнута, если длина подобрана не точно.

Для приварки гвоздей подойдет стандартный комплект оборудования FARADAY CD 1400

Монтаж изоляционного материала с помощью чашеобразных гвоздей CHP

Конденсаторная сварка позволяет проводить монтаж изоляционного материала на металлическую поверхность.

В качестве изоляции может быть практически любой материал: любая рулонная изоляция, пенопласт, шумопоглощающий материал и проч. Преимуществами конденсаторной сварки являются быстрота, надежность крепления и эстетический вид. Во многих случаях конденсаторная сварка является единственным способом избежать повреждения (прожигания насквозь) тонкостенных металлических конструкций, поскольку уровень оплавления минимален, что бывает важно для вентиляционного оборудования.

При монтаже изоляционного материала чашеобразными гвоздями необходимо использовать сварочный пистолет CHP, комплектуемый магнитным держателем.

Данный способ позволяет очень быстро произвести монтаж, поскольку приварка гвоздя осуществляется сразу сквозь изоляцию и не требует никаких дополнительных действий. При использовании чашеобразных гвоздей сохраняется эстетический вид после монтажа.

Что такое конденсаторная сварка

Конденсаторная сварка - способ сварки , при котором для нагрева соединяемых изделий используют кратковременный мощный импульс тока , получаемый от батарей статических конденсаторов. Известно несколько разновидностей К . с .: сопротивлением (точечная , шовная , стыковая ), ударная (стыковая )и др . К . с . особенно эффективна при соединении мелких деталей и металлических листов небольшой толщины , например при изготовлении деталей для электронных ламп , малогабаритных приборов и аппаратов , металлических игрушек , предметов галантереи и пр .

Общие сведения Основные приёмы

По технологическим приёмам разделяют точечную, шовную и стыковую конденсаторную сварку.

  • Точечная сварка обычно используется для выполнения соединений в электронной, электровакуумной технике и прецизионном приборостроении. Кроме того, точечная сварка может быть использована для соединений деталей с большим соотношением толщин.
  • Шовная (роликовая) сварка обычно применяется для сварки чувствительных элементов мембранного или сильфонного типов и электровакуумных приборов . По своей сути она представляет собой ряд точечных, перекрывающихся соединений, являющихся сплошным, герметичным швом. Электроды выполняются в виде вращающихся роликов.
  • Стыковая сварка разделяется на сварку оплавлением и сопротивлением. Технологически при оплавлении разряд конденсатора за счёт повышенного напряжения возникает до непосредственного контакта свариваемых деталей, оплавляет их торцы, а само соединение происходит при осадке. В случае сварки сопротивлением разряд конденсатора происходит в момент контакта свариваемых торцов деталей.

Частным случаем конденсаторной сварки оплавлением является приварка крепёжных элементов: шпилек, втулок, гвоздей и т. п. Их диаметр обычно варьируется от 2 до12 мм . Обязательным условием является наличие в основании привариваемых элементов осевого выступа в виде цилиндра с диаметром от 0,6 до 0,75 мм и высотой от 0,55 до 0,75 мм . Это служит двум целям:

  • Позволяет точно, по предварительному кернению , определить место приварки элемента на поверхности заготовки.
  • Обеспечивает розжиг и устойчивое горение сварочной дуги по всей поверхности привариваемого элемента при осуществлении разряда конденсатора.
Основные преимущества
  1. Высокая производительность.
  2. Минимальная зона термического влияния за счёт высокой плотности энергии и краткости импульса.
  3. Прочность соединения.
  4. Простота технологии, не требующей высокой квалификации персонала.
  5. Равномерность нагрузки электросети при больших сварочных токах.
Некоторые недостатки
  1. Ограничения по максимальным сечениям.
  2. Необходимость специального оборудования.

Технология конденсаторной сварки

В процессе изготовления различной продукции из металлического листа, при монтажных работах и ремонте, возникает необходимость соединения различных деталей посредством сборки.

До настоящего времени на производствах в России используются устаревшие технологии. Вариантов немного. Это сверление отверстий под крепеж различного вида (болты с гайками, заклепки различного типа) или выполнение приварки болтов и гаек аргонно-дуговой сваркой или полуавтоматом с применением сварочной проволоки и защитного газа. В этих технологических процессах имеются существенные недостатки: во-первых, выполнение отверстий в несущих конструкциях ослабляет их прочность, во-вторых, во многих изделиях требуется герметичность, но с отверстиями достичь этого сложно, в-третьих, внешний вид любого прибора или оборудования будет испорчен наличием головок винтов или шляпок заклепок, ну и последнее, при сварке, особенно на тонком листе, появляются прожженные места, потемнение. Всех этих недостатков лишена технология приварки крепежа посредством конденсаторной сварки.

Конденсаторная сварка (Capacitor Discharge CD) - это возможность очень прочной и быстрой приварки крепежных элементов к тонколистовому металлу толщиной от 0.5 мм без видимых повреждений с обратной стороны листа. Второе не менее важное преимущество заключается в том, что для приварки крепежа к различным металлам не требуется защитный газ или защитные керамические кольца, применяемые в дуговой сварке (ARC). Сварочный процесс полностью автоматизирован и для работы с аппаратами конденсаторной сварки не требуется специальной квалификации. Для конденсаторной сварки выпускается различное оборудование от недорогих ручных моделей до полностью автоматизированных линий, а также достаточно большой ассортимент недорогих приварных метизов

Теория сварочного процесса конденсаторной сварки (CD).

В этом сварочном процессе электрическая энергия, накопленная в конденсаторной батарее большой емкости, разряжается через выступающий кончик основания привариваемого крепежного элемента. Период разряда длиться 1-3 мс . (0.001-0.003 секунд). Существует два способа приварки крепежных элементов методом конденсаторного разряда (CD).

Первый способ контактного типа включает следующие последовательные циклы:

1. Привариваемый крепежный элемент устанавливается в сварочный пистолет контактного типа, позиционируется в нужном месте и прижимается к поверхности. Необходимое усилие прижима задается пружиной в сварочном пистолете.

2. Запускается сварочный процесс и между основанием крепежного элемента и металлической поверхностью возникает электрическая дуга, которая плавит поверхность основания крепежного элемента и место на металлической поверхности под основанием крепежного элемента.

3. Крепежный элемент после плавления выступающего кончика основания под действием силы пружины сварочного пистолета прижимается к металлической поверхности и вдавливается в образовавшийся под ним расплав.

Второй способ с предварительным подъемом крепежного элемента:

1. Привариваемый крепежный элемент устанавливается в сварочный пистолет подъемного типа, позиционируется в нужном месте и прижимается к поверхности. Необходимое усилие прижима задается в сварочном пистолете.

2. В момент запуска процесса сварки, сварочный пистолет приподнимает привариваемый элемент над металлической поверхностью, за счет этого электрический контакт разрывается и на крепежный элемент подается электрический потенциал от конденсаторной батареи силового блока.

3. Приподнятый крепежный элемент под действием силы пружины в сварочном пистолете, опускается вниз и в момент касания выступающего кончика основания металлической поверхности появляется электрический контакт, возникает электрическая дуга, которая плавит поверхность основания крепежного элемента и место на металлической поверхности под основанием крепежного элемента.

4. После плавления выступающего кончика основания крепежный элемент прижимается к металлической поверхности и вдавливается в образовавшийся под ним расплав

Конденсаторная сварка с использованием контактного способа применяется для приварки крепежных элементов из обычной и нержавеющей стали, а также латуни.

Конденсаторная сварка с использованием способа с предварительным подъемом крепежного элемента используется главным образом для приварки крепежа из алюминия, но также может быть использована для крепежа из стали, нержавеющей стали и латуни.

Стандартные типы привариваемых метизов

Для сварки методом конденсаторной сварки используются специиальные метизы, оснащенные специальным поджигающим кончиком. При их производстве используются: омедненная сталь, нержавеющая сталь, алюминий и латунь. Промышленностью выпускаются, как стандартные виды крепежа, так и крепеж специального назначения, выпускаемый под заказ. Характерной особенностью метиза для конденсаторной сварки - специальный кончик калиброванного размера, который выполняет двойную задачу:

  • Позволяет точно определить место, где будет приварен метиз на поверхности заготовки по предварительному ее кернению;
  • Обеспечения розжиг и устойчивое горение сварочной дуги по всей поверхности привариваемого метиза при прохождении через него конденсаторного разряда.

Настройка аппарата конденсаторной сварки FARADAY (Фарадей)

Механические характеристики сварочного шва определяются, правильной настройкой параметров сварки, которая включает в себя:

  • подбор величины энергии разряда за счет изменении напряжения конденсаторной батареи,
  • настройку усилия прижимной пружины сварочного пистолета и зазора между метизом и цангой;
  • правильная организация заземления;
  • правильный подбор сочетаний свариваемых материалов;

Выбор величины энергии разряда

Оптимальные напряжения сварки для комбинации материалов «сталь-сталь» приведены в таблицах для обоих аппаратов. Для других комбинаций материалов оптимальное напряжение может немного отличаться от рекомендованного и должно подбираться опытным путем.

D, диаметр

FARADAY CD 1400

U, напряжение

P, мощность

3 мм

70 В

162 Дж

4 мм

100 В

330 Дж

5 мм

115 В

436 Дж

6 мм

140 В

648 Дж

7 мм

180 В

1070 Дж

8 мм

200 В

1320 Дж

Настройка пистолета для приварки метизов

Усилие прижимной пружины сварочного пистолета на качество сварки влияет заметно меньше чем напряжение, в основном от него зависит длительность сварочного цикла, чем больше усилие, тем меньше время сварки.

Настройка цанги метиза

Цанги для установки метизов сварочных пистолетов DC однотипные. Они отличаются только диаметром внутреннего отверстия для возможности установки метизов разного диаметра. Другую конструкцию имеют цанги для приварки лепестков заземления и гвоздей.

1. Метиз

2. Цанга

3. Контргайка

4. Стопорный винт

Для различных диаметров метизов требуются различные цанги. Настройте цангу метиза следующим образом:

  • Ослабьте контргайку (3)
  • Вставьте метиз (1) в цангу.
  • Расстояние между передней кромкой фланца метиза и торцом цанги должно быть в пределах приблизительно 5 мм (как изображено на рисунке).
  • Метиз должен войти в контакт со стопорным винтом (4). (ВАЖНО!)
  • Настройте стопорный винт (4) в цанге метиза, вращая его, пока расстояние от передней кромки фланца метиза и торца цанги не достигнет 5 мм.
  • Зафиксируйте стопорный винт (4) посредством контргайки (3)
  • Для метизов длиной от 20 до 40 мм. стопорный винт нужно перевернуть резьбовым концом внутрь обоймы.

Установка цанги метиза в сварочный пистолет

Иллюстрация, приведенная ниже, показывает, как устанавливать цангу в пистолет DC для приварки метизов. Сварочный пистолет DC может иметь вместо опорных ножек (1) съемную опорную трубу.

  • Ослабьте стопорную гайку (3) торцовым ключом;
  • Вставьте цангу метиза (2) в пружинный поршень (5), пока она не упрётся.
  • Закрепите цангу (2) завернув стопорную гайку (3).

Фланец метиза должен выходить за вершины опорных ножек пистолета или опорной трубы. Если это не так, выньте обойму метиза из пистолета и откорректируйте выступание метиза посредством стопорного винта цанги!

Правила организации заземления

Из-за малого времени сварки для получения равномерного сварного шва по всей площади основания метиза необходимо правильно произвести заземление рабочей поверхности. Все аппараты конденсаторной сварки имеют в комплекте по два кабеля заземления. Заземление должно производиться с двух сторон от места сварки, при этом нужно стремиться к тому, что бы путь для прохождения сварочного тока был примерно одинаков для каждого кабеля заземления. Если заземление произведено только с одной стороны, или на пути тока встречаются массивные металлические детали, распределение сварочного тока будет несимметрично относительно основания метиза и качество сварки с разных сторон основания может быть разным (эффект «выдувания дуги»).

Выбор сочетаний материалов для сварки

При выборе сочетаний материалов основы и приварных изделий можно использовать данные таблицы:

МАТЕРИАЛ

ОСНОВЫ

МАТЕРИАЛ МЕТИЗА

Мягкая сталь

Ст.35

Нержавеющая сталь Cr-Ni

Алюминий

Al 99.5, AlMg 1-5

Латунь

CuZn 37

Мягкая сталь, Ст.35

Отлично

Отлично

Плохо

Отлично

Средне углеродистая

сталь, Ст.60

Хорошо

Хорошо

Плохо

Хорошо

Оцинкованная сталь

Хорошо

Хорошо

Плохо

Плохо

Нержавеющая сталь, Cr-Ni

Отлично

Отлично

Плохо

Отлично

Латунь, CuZn 37-30

Хорошо

Хорошо

Плохо

Отлично

Медь, Cu

Хорошо

Хорошо

Плохо

Отлично

Алюминий,

Al 99.5, AlMg 1-5

Плохо

Плохо

Отлично

Плохо

Отлично: материалы полностью совместимы и сварной шов очень прочный.

Хорошо: материалы условно совместимы, качество сварного шва приемлемое.

Плохо: материалы несовместимы, сварной шов отсутствует или очень непрочный.

Способы позиционирования метиза при сварке

Сварка по «кернению»

Место сварки можно обозначать кернением рабочей поверхности. Так как процесс сварки начинается путем воспламенения сварочного кончика метиза, слишком глубокое кернение не обеспечит оптимальных условий сварки. Сварка или не произойдет совсем или качество сварки будет неприемлемым. Для качественной сварки кернение должно осуществляться на глубину не более 0,3 мм. Удобно для этих целей использовать специальный инструмент - автоматический керн.

Сварка по шаблону

При массовом производстве для быстрой и точной сварки необходимо использовать шаблон. При этом на пистолете должна быть установлена центрирующая шайба.

Шаблон может быть изготовлен из любого негорючего материала, для исключения возможности возгорания, а между шаблоном и свариваемой поверхностью должен быть зазор не менее 3 мм для удаления сварочных газов и брызг расплавленного металла.

Последовательность выполнения сварки

  • Подключите силовой блок FARADAY (Фарадей) к сети и заземлению.
  • Подключите сварочный пистолет.
  • Настройте пистолет как описано выше.
  • Подключите блок питания к сети переменного тока.
  • Настройте блок питания для приварки метизов, которые предполагается использовать.
  • Вставьте сварочный метиз в цангу.
  • Обеими руками возьмите сварочный пистолет и установите его в рабочую позицию на обрабатываемой детали и нажмите вертикально на поверхность обрабатываемого изделия.
  • Спокойно держите сварочный пистолет и приведите в действие пусковую кнопку. Процесс сварки начат.
  • После сварки вертикально снимите сварочный пистолет с приваренного болта, что позволит избежать расширения цанги.
  • Проверьте результаты сварки согласно рекомендациям ниже.
  • По окончании сварки отключите сварочную установку от сети и исключите вероятность эксплуатации некомпетентными лицами
  1. Убедитесь в наличии хороших электрических контактах в разъемах блока питания, креплении цанги в пистолете и клеммах заземления.
  2. Перед сваркой убедитесь, что сварочные кабели не образуют петель. Этим можно избежать сильных электромагнитных наводок при прохождении через них больших импульсных токов.
  3. Убедитесь, что клеммы заземления закреплены симметрично и не слишком близко к месту сварки. Это позволит избежать дефектов сварного шва, вызванного эффектом «выдувания дуги».
  4. Убедитесь, что обрабатываемые детали надежно закреплены и не прогибаются под давлением сварочного пистолета. Это особенно относиться к тонким листовым материалам.
  5. Место сварки должно быть зачищено до металла, недопустимо наличие в зоне сварки ржавчины, смазки или краски. Анодированные поверхности должны быть предварительно обработаны щелочью. М аксимальная шероховатость зоны сварки не должна превышать 80 µm.
  6. Материалы свариваемых поверхностей должны быть совместимы (смотри таблицу совместимости материалов). Если есть сомнения в совместимости материалов необходимо провести пробные сварки с последующим контролем качества.
  7. Вокруг зоны сварки должно быть не менее 40 мм. свободного места для позиционирования пистолета или центровочной насадки.
  8. Убедитесь в правильных установках сварочного напряжения и настройке пистолета перед выполнением сварки.
  9. В момент сварки пистолет и обрабатываемая деталь должны быть неподвижны, и располагаться строго перпендикулярно относительно друг друга.
  10. Всегда делайте пробные приварки, что бы убедиться в правильности всех настроек.

– ваше любимое слово, вам вряд ли кто-нибудь поверит. Но если вы занимаетесь сваркой и претендуете на статус профессионала высокого класса, вам придется это слово если не полюбить, то относиться со всем уважением.

Его нужно не просто уважать, а хорошо разбираться в положенных государственных стандартах, касающихся типологии сварочных способов. Почему? Потому что, если вы работаете с чем-то серьезнее, чем старый тазик на даче, вы обязательно столкнетесь с рабочими чертежами, где будут в огромных количествах значки, буквы и аббревиатуры.

Все верно, без технических спецификаций и стандартных обозначений – никуда. Современные сварочные технологии – это широкий набор самых разных методов со своими требованиями и техническими нюансами. Все они укладываются в несколько стандартов, по которым мы сейчас пройдемся и рассмотрим самым внимательным образом.

Обозначения сварки на чертежах по ГОСТу на первый взгляд выглядят устрашающе. Но если разобраться и запастись оригинальными версиями трех главных ГОСТов по видам и обозначениям , обозначения станут понятными и информативными, а ваша работа точной и профессиональной.

Виды сварных соединений.

Сначала ЕСКД – это Единая Система Конструкторской Документации, если проще – комплекс всевозможных стандартов, согласно которым должны выполняться все современные технические чертежи, в том числе документация по сварочным работам.

В составе этой системы есть несколько стандартов, которые нас интересуют:

  1. ГОСТ 2.312-72 под названием «Условные изображения и обозначения швов сварных соединений».
  2. ГОСТ 5264-80 «Ручная дуговая сварка. Соединения сварные», в котором исчерпывающе описаны все возможные виды и обозначения сварных швов.
  3. ГОСТ 14771-76 “Швы сварных соединений, сварка в защитных газах”.

Чтобы разобраться с условными обозначениями сварочных способов в инженерных чертежах, нужно разобраться и с их видами. Предлагаем взглянуть на пример обозначения на чертеже:

Выглядит громоздко и устрашающе. Но мы не будем нервничать и не спеша во всем разберемся. В это длинной аббревиатуре есть четкая логика, начнем двигаться по этапам. Разобьем этого монстра на девять составных частей:

Теперь эти же составные элементы по квадратам:

  • Квадрат 1 – вспомогательные знаки для обозначения: замкнутая линия или монтажное соединение.
  • Квадрат 2 – стандарт, по которому приведены условные обозначения.
  • Квадрат 3 – обозначение буквой и цифрой типа соединения с его конструктивными элементами.
  • Квадрат 4 – способ сварки согласно стандарту.
  • Квадрат 5 – тип и размеры конструктивных элементов по стандарту.
  • Квадрат 6 – характеристика в виде длины непрерывного участка.
  • Квадрат 7 – характеристика соединения, вспомогательный знак.
  • Квадрат 8 – вспомогательный знак для описания соединения или его элементов.

А теперь разберём в деталях каждый элемент нашей длинной аббревиатуры.

В квадрате №1 находится кружок – одна из дополнительных характеристик, символ кругового соединения. Альтернативным символом является флажок, обозначающий монтажный вариант вместо кругового.

Специальная односторонняя стрелка показывает шовную линию. С этой стрелкой связана еще одна специфическая особенность сварочных чертежей. У этой стрелки с односторонним оперением есть симпатичная особенность под названием «полка». Полка играет роль настоящей полки – все условные обозначения могут располагаться на полке, если указано видимое соединение.

Или под полкой, если это шов невидимый и расположен с обратной стороны, т.е. с изнанки. Что считать лицевой стороной, а что изнанкой? Лицевая сторона одностороннего соединения – всегда та, с которой производится работа, это просто. А вот в двустороннем варианте с несимметричными кромками лицевой стороной будет та, где идет сварка основного соединения. А если кромки симметричные лицевой и изнанкой могут любые стороны.

А вот самые популярные вспомогательные знаки, используемые в чертежах со сваркой:

Разбираем квадраты №2 и 3, виды швов по ГОСТам

Вариантами соединений вплотную занимаются два стандарта: уже знакомый нам ГОСТ 14771-76 и знаменитый ГОСТ 5264-80 о .

Чем знаменит второй стандарт: он был написан много лет назад – в 1981 году, и это было сделано так грамотно, что этот документ отлично работает до сих пор.

Пример чертежа сварных швов по ГОСТ.

Виды сварочных соединений следующие:

С – стыковой шов. Свариваемые металлические поверхности соединяются смежными торцами, находятся на одной поверхности или в одной плоскости. Это один из самых распространенных вариантов, так как механические параметры стыковых конструкций очень высокие. Вместе с тем этот способ достаточно сложный с технической точки зрения, он по силам опытным мастерам.

Т – тавровый шов. Поверхность одной металлической заготовки соединяется с торцом другой заготовки. Это самая жесткая конструкция из всех возможных, но за счет этого тавровый способ не любит и не предназначен для нагрузок с изгибаниями.

Н – нахлесточный шов. Свариваемые поверхности параллельно смещены и немного перекрывают друг друга. Способ довольно прочный. Но нагрузки переносит меньше, чем стыковые варианты.

У – угловой шов. Плавление идет по торцам заготовок, поверхности деталей держат под углом друг к другу.

О – особые типы. Если способа нет в ГОСТе, в чертеже обозначается особый тип сварки.

Оба стандарта в рамках ЕКСД хорошо перекликаются друг с другом и справедливо делят ответственность по видам:

Варианты изображения сварных швов на чертежах.

Соединения ручного дугового способа по ГОСТу 5264-80:

  • С1 – С40 стыковые
  • Т1 – Т9 тавровые
  • Н1 – Н2 нахлесточные
  • У1 – У10 угловые

Соединения сварки в защитных газах по ГОСТу 14771-76:

  • С1 – С27 стыковые
  • Т1 – Т10 тавровые
  • Н1 – Н4 нахлесточные
  • У1 – У10 угловые

В нашей аббревиатуре во втором квадрате указан ГОСТ 14771-76, а в третьем Т3 – тавровый способ без скоса кромок двусторонний, который как раз указан в этом стандарте.

Квадрат №4, способы сварки

Как обозначаются различные виды швов.

Также в стандартах присутствуют обозначения способов сварки, вот примеры самых распространенных из них:

  • A – автоматическая под флюсом без подушек и подкладок;
  • Aф – автоматическая под флюсом на подушке;
  • ИH – в инертном газе вольфрамовым электродом без присадки;
  • ИHп – способ в инертном газе с вольфрамовым электродом, но уже с присадкой;
  • ИП – способ в инертном газе с плавящимся электродом;
  • УП – то же самое, но в углекислом газе.

У нас в квадрате №4 указано обозначение сварки УП – это способ в углекислом газе с плавящимся электродом.

Квадрат №5, размеры шва

Это обязательные размеры шва. Удобнее всего обозначить длину катета, так как речь идет о тавровом варианте с перпендикулярным объединением под прямым углом. Катет определяют в зависимости от предела текучести.

Надо заметить, что, если на чертеже указано соединение стандартных размеров, длина катета не указывается. В нашем чертежном обозначении катет равен 6-ти мм.

Классификация сварных швов.

Дополнительно соединения бывают:

  • SS односторонними, для которых дуга или передвигаются с одной стороны.
  • BS двусторонними, источник плавления передвигается с обеих сторон.

В дело вступает третий участник нашей чертежно-сварочной тусовки – ГОСТ 2.312-72, как раз посвященный изображениям и обозначениям.

Согласно этому стандарту швы подразделяются на:

  • Видимые, которые изображаются сплошной линией.
  • Невидимые, обозначаемые на чертежах пунктирной линией.

Теперь вернемся к нашему первоначальному шву. Нам по силам перевести это условное обозначение сварки в простой и понятный для человеческого уха текст:

Двусторонний тавровый шов методом ручной дуговой сварки в защитном углекислом газе с кромками без скосов, прерывистый с шахматным расположением, катет шва 6 мм, длина провариваемого участка 50 мм, шаг 100 мм, выпуклости шва снять после сварки.

Конденсаторная стыковая сварка имеет ту особенность, что для нагрева используется мощный и кратковременный разряд конденсатора. Она применяется в двух вариантах: с возбуждением дугового разряда и без него.

Рис. Схема.конденсаторной (ударной) стыковой сварки: 1 - конденсатор; 2 и 3 — неподвижный и подвижный электроды; 4 - пружина; 5 -защелка.

Вариант с возбуждением дугового разряда

  1. В первом случае (рис.) контактные плиты соединены непосредственно с конденсатором, заряженным до напряжения в несколько тысяч вольт.
  2. Пружинный механизм осадки осуществляет сближение и сдавливание демм²талей с большой скоростью и усилием.
  3. В тот момент, когда зазор между торцами становится менее 1-1,5 мм, вспыхивает мощный дуговой разряд, мгновенно оплавляющий всю поверхность стыка.
  4. Продолжающееся движение детали заканчивается осадкой и сваркой.
  5. Весь процесс нагрева и осадки длится всего лишь около 0,001 сек. За это время теплота практически не успевает распространиться в глубь тела деталей, и нагрев ограничивается поверхностным слоем глубиной в 0,1-0,2 мм.

Характерные особенности

  • Удельное давление при такой сварке в 3-5 раз больше, чем при обычной. Вследствие кратковременности нагрева влияние разницы в тепло генерирования и теплопередаче тела деталей не успевает себя проявить. Поэтому такие факторы, как тепло- и электропроводность деталей, их форма, сечение и установочная длина, для тепловых процессов имеют малое значение.
  • Не является препятствием и разница в температуре плавления, так как поверхности торцов под воздействием очень высокой температуры дуги одновремм²менно и независимо друг от друга достигают своей температуры плавления.

Благодаря этим особенностям, конденсаторная сварка нашла применение для соединения деталей совершенно различных сечений, при сочетаниях разнородных металмм²лов. Практическое отсутствие зоны термического плавлемм²ния позволяет производить сварку закаленных сталей без заметного изменения свойств металла в зоне сварки.

В отдельных случаях представляет интерес очень малая величина припуска на сварку и практическое отсутствие грата. Этот вид сварки можно использовать при коммм²пактных сечениях деталей, не превышающих 300 мм2, так как при больших сечениях наблюдается неравномермм²ность нагрева торца.

Конденсаторная сварка без дугового разряда


Способ заключается в том, что детали сначала плотно сдавливаются и затем уже дается импульс тока от конденсатора. Машины в этом случае имеют трансформатор, я разряд конмм²денсатора осуществляется на первичную обмотку транмм²сформатора.

Много стыковая сварка.

Для повышения производительности в массовом производстве одновременно производится сварка двух или нескольких стыков. Примеры много стыковой сварки приведены на рис. Питание каждой разно полярной пары губок часто осуществляется от отдельного трансформатора.

Сварка по методу А. М. Игнатьева.

Иногда этот метод называют, поверхностная и продольно-стыковая сварка, является разновидностью стыковой сварки сопротивлением.

Отличие заключается в том, что нагрев осуществляется пропусканием тока не через поверхность стыка, а вдоль свариваемых деталей. Контактное сопротивление в стыке отсутствует, состояние контактной поверхности, сварочное давление на процесс нагрева не влияют.

Многостыковая сварка: а - двухстыковая сварка труб с наконечниками; б - четырехстыковая сварка рамы.

Процесс осуществляется следующим образом:

  1. детали 4 устанавливаются на плиту машины и зажимаются пуансоном 6.
  2. К концам нижней детали от трансформатора 1 с помощью гибких шин 2 и электродов 3 подводится ток.
  3. Для предотвращения нежелательного охлаждения деталей и шунтирования тока в тело пуансо¬на и плиты применяются изоляционные прокладки 5:
  4. Ток, проходящий через детали, нагревает их до необходимой температуры; в результате действия нагрева и давления детали свариваются по всей поверхности их сопряжения.

Определяющим условием качественной сварки является равномерность нагрева по всей поверхности сопряжения деталей и надлежащая защита от окисления.

Чтобы к концу сварки температура смогла выровняться, время нагрева принимается относительно большим (несколько минут); соответственно сила тока имощность небольшие: значительно меньше, чем при обычной стыковой сварке деталей того же сечения.

Для предотвращения окисления необходима точная обработка поверхности стыка и тщательная зачистка от всех загрязнении и окислов. Иногда в этих целях стык предварительно покрывают тонким слоем буры или приобретают к защите путем подачи в зону сварки нейтральных защитных газов.

Сварка по методу А. М. Игнатьева обычно применяется для изготовления сварного инструмента.

Рис. Схема сварки по методу А- М. Игнатьева:
I - трансформатор; 2 - токоподводящие гибкие шины; 3 - электроды; 4 - теплоизолирующие прокладки; 5 - свариваемые детали; 6 - пуансон.

Техническая документация - это своеобразная книга для конструкторов, проектировщиков, инженеров, мастеров и рабочих. Составляется (пишется) по определенным правилам и требованиям. Это требуется для правильного понимания изложенной информации. Одна из областей технического текста - обозначение сварных швов на чертежах.

Сварочный процесс - технологическая операция образования монолитного соединения. Зона, где происходило расплавление и застывание материала стыкуемых деталей, называется сварным швом.

Виды

Сварной стык подразделяется:

  • Стыковой. Соединение образовано по торцевым поверхностям деталей. Осуществляется с обработкой кромок и без оного. Маркировка «С».
  • Нахлесточный. Плоскости деталей параллельны друг другу и частично заходят одна на другую. Маркировка «Н».

Шов выполняется:

  • Односторонний. Наплавление осуществляется с одной из сторон соединения (стыка).
  • Двусторонний. Обработка происходит с двух сторон.

Необходимость обозначения сварки

Любая конструкция состоит из отдельных деталей (узлов), соединенных между собой тем или иным способом. Один из них - сварка. Стык обладает своими характеристиками, влияющими на работоспособность изделия в целом.

Обозначение сварки на чертеже - это пояснение способа стыковки, формы шва и его геометрические параметры, способ выполнения и другая дополнительная информация. Грамотный инженер почерпнет дополнительные сведения:

  • о прочности - соединение сплошное или прерывистое; кроме этого, в зоне шва образуются термические напряжения;
  • о размерах и форме наплавленного металла;
  • герметичности стыка;
  • время выполнения соединения - до монтажа или в его процессе, и другое.

Расшифровка технической аббревиатуры

Изучение обозначения сварного шва на чертеже можно выполнить двумя способами:

  • начать с азов - чтения специальной литературы, в том числе ГОСТов (аналог - изучение букв по Азбуке);
  • пойти от обратного, то есть начать с рассмотрения примеров как обозначается сварка на чертежах, с постепенным углублением своих знаний.

Примеры

Маркировка сварочного стыка регламентируется ЕСКД. В нее входит:

  • ГОСТ 2.312-72.
  • ГОСТ 5264-80.
  • ГОСТ 14771-76.

По ГОСТ, сварной стык обозначается в технической документации выносной стрелкой:

Расположение надписи сверху стрелки, ниже ее или с обеих сторон показывает на расположение соединения:

  • с лицевой части детали;
  • с обратной (невидимый стык);
  • двусторонняя обработка.

Надпись и стрелка обозначают обратную (закрытую) или лицевую часть, соответственно.

Пример 2.

  • Выполнен с одной стороны, с загибом края, разомкнутый контур, по нормативам ГОСТ 5264-80, электродуговая сварка.

Пример 3.

  • - соединение произведено по сплошной линии в виде кольца;
  • ГОСТ 17771-76 - сварка в облаке газов;
  • Т3 - тавровый стык с обработкой каждой из сторон; разделка кромок отсутствует;
  • УП - газообразная окись углерода, расплавляемый электрод;
  • 6 - величина катета сварочного стыка 6мм;
  • Периодическое исполнение с проваренным сплошным участком 50мм в шахматном порядке (Z), шаг 100мм.

Маркировочные знаки условно чертят над (под) полочкой выносной стрелки:

Применяемые вспомогательные знаки

Обозначение сварки (выдержки из нормативной документации) по отличающимся способам операций (ручной электродуговой, аргоновой) сведены в таблицу:

Способы выполнения сварочного шва отражены в ГОСТ:

  • А - стыковка посредством автоматики с флюсом при отсутствии подкладки, подушки, без предварительного шва;
  • Аф - сварка на автомате с использованием флюса и подущки на его основе;
  • ИН - стыковка осуществляется посредством тугоплавкого электрода из вольфрамового сплава в облаке газов без добавления дополнительного материала;
  • ИНп - стыковка производится электродом из вольфрама в облаке инертных газов с добавлением добавочного материала;
  • ИП - применение расплавляющегося электрода в облаке газов;
  • УП - соединение в среде окиси углерода посредством расплавляющегося электрода.

В целом, расшифровывать и читать обозначение сварных швов в документации почти тоже самое, что учиться читать по Азбуке или Букварю. Требуется запомнить регламентирующие документы (ГОСТ) и грамотно расшифровывать обозначения, приведенные на чертежах.