Удельное сопротивление. Удельное сопротивление меди Что такое проводимость

Электрическое сопротивление, выражаемое в омах, отличается от понятия «удельное сопротивление». Чтобы понять, что такое удельное сопротивление, надо связать его с физическими свойствами материала.

Об удельной проводимости и удельном сопротивлении

Поток электронов не перемещается беспрепятственно через материал. При постоянной температуре элементарные частицы качаются вокруг состояния покоя. Кроме того, электроны в зоне проводимости мешают друг другу взаимным отталкиванием из-за аналогичного заряда. Таким образом возникает сопротивление.

Удельная проводимость является собственной характеристикой материалов и количественно определяет легкость, с которой заряды могут двигаться, когда вещество подвергается воздействию электрического поля. Удельное сопротивление является обратной величиной и характеризуется степенью трудности, которую электроны встречают при своих перемещениях внутри материала, давая представление о том, насколько хорош или плох проводник.

Важно! Удельное электрическое сопротивление с высоким значением указывает на то, что материал плохо проводящий, а с низким значением – определяет хорошее проводящее вещество.

Удельная проводимость обозначается буквой σ и рассчитывается по формуле:

Удельное сопротивление ρ, как обратный показатель, можно найти так:

В этом выражении E является напряженностью создаваемого электрического поля (В/м), а J – плотностью электротока (А/м²). Тогда единица измерения ρ будет:

В/м х м²/А = ом м.

Для удельной проводимости σ единицей, в которой она измеряется, служит См/м или сименс на метр.

Типы материалов

В соответствии с удельным сопротивлением материалов, их можно классифицировать на несколько типов:

  1. Проводники. К ним относятся все металлы, сплавы, растворы, диссоциированные на ионы, а также термически возбужденные газы, включая плазму. Из неметаллов можно привести в пример графит;
  2. Полупроводники, фактически представляющие собой непроводящие материалы, кристаллические решетки которых целенаправленно легированы включением чужеродных атомов с большим или меньшим числом связанных электронов. В результате в структуре решетки образуются квазисвободные избыточные электроны или дырки, которые вносят вклад в проводимость тока;
  3. Диэлектрики или изоляторы диссоциированные – все материалы, которые в нормальных условиях не имеют свободных электронов.

Для транспортировки электрической энергии или в электроустановках бытового и промышленного назначения часто используемый материал – медь в виде одножильных или многожильных кабелей. Альтернативно применяется металл алюминий, хотя удельное сопротивление меди составляет 60% от такого же показателя для алюминия. Но он гораздо легче меди, что предопределило его использование в линиях электропередач сетей высокого напряжения. Золото в качестве проводника применяется в электроцепях специального назначения.

Интересно. Электропроводность чистой меди была принята Международной электротехнической комиссией в 1913 году в качестве стандарта по этой величине. Согласно определению, проводимость меди, измеренная при 20°, равна 0,58108 См/м. Это значение называется 100% LACS, а проводимость остальных материалов выражается как определенный процент LACS.

Большинство металлов имеют значение проводимости меньше 100% LACS. Однако есть исключения, такие как серебро или специальная медь с очень высокой проводимостью, обозначенные С-103 и С-110, соответственно.

Диэлектрики не проводят электричество и используются в качестве изоляторов. Примеры изоляторов:

  • стекло,
  • керамика,
  • пластмасса,
  • резина,
  • слюда,
  • воск,
  • бумага,
  • сухая древесина,
  • фарфор,
  • некоторые жиры для промышленного и электротехнического использования и бакелит.

Между тремя группами переходы являются текучими. Известно точно: абсолютно непроводящих сред и материалов нет. Например, воздух – изолятор при комнатной температуре, но в условиях мощного сигнала низкой частоты он может стать проводником.

Определение удельной проводимости

Если сравнивать удельное электрическое сопротивление различных веществ, требуются стандартизированные условия измерения:

  1. В случае жидкостей, плохих проводников и изоляторов, используют кубические образцы с длиной ребра 10 мм;
  2. Величины удельного сопротивления почв и геологических образований определяются на кубах с длиной каждого ребра 1 м;
  3. Проводимость раствора зависит от концентрации его ионов. Концентрированный раствор менее диссоциирован и имеет меньше носителей заряда, что снижает проводимость. По мере увеличения разведения увеличивается число ионных пар. Концентрация растворов устанавливается в 10%;
  4. Для определения удельного сопротивления металлических проводников используются провода метровой длины и сечения 1 мм².

Если материал, такой как металл, может обеспечить свободные электроны, то когда приложить разность потенциалов, по проводу потечет электрический ток. По мере увеличения напряжения большее количество электронов перемещается через вещество во временную единицу. Если все дополнительные параметры (температура, площадь поперечного сечения, длина и материал провода) неизменны, то отношение силы тока к приложенному напряжению тоже постоянно и именуется проводимостью:

Соответственно, электросопротивление будет:

Результат получается в ом.

В свою очередь, проводник может быть разных длины, размеров сечения и изготавливаться из различных материалов, от чего зависит значение R. Математически эта зависимость выглядит так:

Фактор материала учитывает коэффициент ρ.

Отсюда можно вывести формулу для удельного сопротивления:

Если значения S и l соответствуют заданным условиям сравнительного расчета удельного сопротивления, т. е. 1 мм² и 1 м, то ρ = R. При изменении габаритов проводника количество омов тоже меняется.

Удельное сопротивление и температура

Удельное сопротивление проводника является величиной, которая меняется с температурой, поэтому ее точно рассчитывают для показателя 20°. Если температура отличается, значение ρ необходимо отрегулировать на основе другого коэффициента, называемого температурным и обозначаемым α (единица – 1/°С). Это тоже характерное значение для каждого материала.

Модифицированный коэффициент рассчитывается на основе значений ρ, α и отклонения температуры от 20 ° Δt:

ρ1 = ρ х (1 + α х Δt).

Если до этого сопротивление было известно, то можно напрямую произвести его расчет:

R1 = R x (1 + α х Δt).

Практическое использование различных материалов в электротехнике напрямую зависит от их удельного сопротивления.

Видео

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении свободные электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Таким образом, электроны, проходя по проводнику, встречают сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическим сопротивлением проводника (оно обозначается латинской буквой r) обусловлено явление преобразования электрической энергии в тепловую при прохождении электрического тока по проводнику. На схемах электрическое сопротивление обозначается так, как показано на рис. 18.

За единицу сопротивления принят 1 ом . Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому, вместо того чтобы писать: «Сопротивление проводника равно 15 ом», можно написать просто: r = 15 Ω.

1000 ом называется 1 килоом (1 ком, или 1 к Ω).

1 000 000 ом называется 1 мегом (1 мгом, или 1 MΩ).

Прибор, обладающий переменным электрическим сопротивлением и служащий для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются, как показано на рис. 18. Как правило, реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток поразному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника тоже оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, константан", никелин и др.) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от длины проводника, поперечного сечения проводника, материала проводника, температуры проводника.

При сравнении сопротивлений проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Сопротивление (в омах) проводника длиной 1 м, сечением 1 мм 2 называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

Сопротивление проводника можно определить по формуле

где r - сопротивление проводника, ом;

ρ - удельное сопротивление проводника;

l - длина проводника, м;

S - сечение проводника, мм2.

Из указанной формулы получаем размерность для удельного сопротивления

В табл. 1 даны удельные сопротивления некоторых проводников.

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм2 обладает сопротивлением 0,13 ом. Чтобы получить 1 ом сопротивления, нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро - 1 ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм 2 . Серебро - лучший проводник, но большая стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм" обладает сопротивлением 0,0175 ом. Чтобы получить сопротивление в 1 ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Подробная характеристика металлов и сплавов приведена в табл. 2.

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм 2:

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм2:

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример3. Для радиоприемника необходимо намотать сопротивление в 30 ом из никелиновой проволоки сечением 0,21 мм2. Определить необходимую длину проволоки:

Пример 4. Определить сечение нихромовой проволоки длиной 20 Ж, если сопротивление ее равно 25 ом:

Пример 5. Проволока сечением 0,5 мм2 и длиной 40 м имеет сопротивление 16 ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Ранее было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включен амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40-50%. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 ом первоначального сопротивления и на 1 0 температуры, называется температурным коэффициентом сопротивления и обозначается буквой α (альфа).

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Полагаем, что J диф, J конв, J терм равны нулю и J = J мигр. Движение ионов в проводниках второго рода и электронов в проводниках первого рода вследствие разности электрических потенциалов обусловливает их способность пропускать электрический ток, т. е. их электрическую проводимость (электропроводность). Для количественной характеристики способности проводников первого и второго рода пропускать электрический ток применяют две меры электрической проводимости. Одна из них - удельная электрическая проводимость κ- является величиной, обратной удельному сопротивлению:

Удельное сопротивление определяется из формулы

где R - общее сопротивление проводника, Ом; l – расстояние между двумя параллельными плоскостями, между которыми определено сопротивление, м; S - площадь поперечного сечения проводника, м 2 .

Следовательно

и удельная электрическая проводимость определяется как величина, обратная сопротивлению одного кубического метра проводника с длиной ребра куба, равной одному метру. Единица удельной электрической проводимости: См/м. C другой стороны, по закону Ома

где Е - разность потенциалов между заданными параллельными плоскостями; I - ток.

Подставив это выражение в уравнение, определяющее удельную электрическую проводимость, получим:

При S = 1 и Е/l = 1 имеем κ = 1. Таким образом, удельная электрическая проводимость численно равна току, проходящему через сечение проводника с поверхностью в один квадратный метр, при градиенте потенциала, равном одному вольту на метр.

Удельная электрическая проводимость характеризует число носителей заряда в единице объема. Следовательно, удельная электрическая проводимость будет зависеть от концентрации раствора, а для индивидуальных веществ - от их плотности.

Второй мерой электрической проводимости является эквивалентная λ э (или молярная λ м) электрическая проводимость, равная произведению удельной электрической проводимости на число кубических метров, в которых содержится один эквивалент или один моль вещества:

λ э = κφ э; λ м = κφ м

Поскольку φ выражено в м 3 /экв или м 3 /моль, то единицей λ будет См∙м 2 /экв или См∙м 2 /моль.

Для растворов φ = 1/С, где С - концентрация, выраженная в моль/м 3 . Тогда

λ э = κ/zC и λ м = κ/С

Если же С выражена в кмоль/м 3 , то φ э = 1/(zC∙10 3); φ м = 1/(С∙10 3) и

λ э = κ/(zC∙10 3) и λ м = κ/(С∙10 3)

При определении молярной проводимости индивидуального вещества (твердого или жидкого) φ м = V M , но V м = M/d (где V м - молярный объем; М - молекулярная масса; d - плотность), сле-

до в а те л ьн о

λ м = κV м = κМ/d

Таким образом, эквивалентная (или молярная) электрическая проводимость есть проводимость проводника, находящегося между двумя параллельными плоскостями, расположенными на расстоянии одного метра друг от друга и такой площади, чтобы между ними поместился один эквивалент (или один моль) вещества (в виде раствора или индивидуальной соли).

Эта мера проводимости характеризует проводимость при оди-наковом количестве вещества (моле или эквиваленте), но содержащемся в разных объемах и, таким образом, отражает влияние сил взаимодействия между ионами как функцию межионных расстояний.

ЭЛЕКТРОННАЯ ПРОВОДИМОСТЬ

Металлы, характеризующиеся небольшой энергией перехода электрона из валентной зоны в зону проводимости, уже при нормальной температуре имеют в зоне проводимости достаточное число электронов для обеспечения высокой электрической проводимости. Проводимость металлов уменьшается с повышением температуры. Это происходит из-за того, что с ростом температуры в металлах преобладает эффект увеличения колебательной энергии ионов кристаллической решетки, оказывающий сопротивление направленному движению электронов, над эффектом увеличения числа носителей заряда в зоне проводимости. Сопротивление химически чистых металлов с повышением температуры возрастает, увеличиваясь примерно на 4∙10 –3 R 0 при повышении температуры на градус (R 0 - сопротивление при 0°С). Для большинства химически чистых металлов при нагревании наблюдается прямолинейная зависимость между сопротивлением и температурой

R = R 0 (1 + αt)

где α - температурный коэффициент сопротивления.

Температурные коэффициенты сплавов могут изменяться в широких пределах, например, у латуни α = 1,5∙10 –3 , а у константана α = 4∙10 –6 .

Удельная проводимость металлов и сплавов лежит в пределах 10 6 - 7∙10 7 См/м. Электрическая проводимость металла зависит от числа и заряда электронов, участвующих в переносе тока, и среднего времени пробега между столкновениями. Эти же параметры при данной напряженности электрического поля определяют и скорость движения электрона. Поэтому плотность тока в металле может быть выражена уравнением

где - средняя скорость упорядоченного движения зарядов; п – число электронов зоны проводимости в единице объема.

Полупроводники по своей проводимости занимают промежуточное положение между металлами и изоляторами. Чистые полупроводниковые материалы, например германий и кремний, обладают собственной проводимостью.

Рис. 5.1. Схема возникновения пары электрон проводимости (1) – дырка (2).

Собственная проводимость обусловлена тем, что при тепловом возбуждении электронов происходит их переход из валентной зоны в зону проводимости. Эти электроны под действием разности потенциалов движутся в определенном направлении и обеспечивают электронную проводимость полупроводников. При переходе электрона в зону проводимости в валентной зоне остается вакантное место - «дырка», эквивалентное присутствию единичного положительного заряда. Дырка также может перемещаться под действием электрического поля в результате перескока на ее место электрона валентной зоны, но в сторону, противоположную движению электронов зоны проводимости, обеспечивая дырочную проводимость полупроводника. Процесс образования дырки показан на рис. 5.1.

Таким образом, в полупроводнике с собственной проводимостью имеется два типа носителей заряда- электроны и дырки, которые обеспечивают электронную и дырочную проводимость полупроводника.

В полупроводнике с собственной проводимостью число электронов в зоне проводимости равно числу дырок в валентной зоне. При данной температуре в полупроводнике существует динамическое равновесие между электронами и дырками, т. е. скорость их образования равна скорости рекомбинации. Рекомбинация электрона зоны проводимости с дыркой валентной зоны приводит к «образованию» электрона в валентной зоне.

Удельная проводимость полупроводника зависит от концентрации носителей заряда, т. е. от их числа в единице объема. Обозна-чим концентрацию электронов n i , а концентрацию дырок р i . В полупроводнике с собственной проводимостью n i = p i (такие полупроводники кратко называются полупроводниками i-типа). Концентрация носителей заряда, например в чистом германии, равна n i = p i ≈10 19 м –3 , в кремнии - примерно 10 16 м –3 и составляет 10 –7 - 10 –10 % по отношению к числу атомов N.

Под действием электрического поля в полупроводнике происходит направленное движение электронов и дырок. Плотность тока проводимости складывается из электронной i e и дырочной i p плотностей токов: i = i e + i p , которые, несмотря на равенство концентраций носителей, не равны по величине, так как скорости движения (подвижности) электронов и дырок различны. Плотность электронного тока равна:

Средняя скорость движения электронов пропорциональна напряженности Е" электрического поля:

Коэффициент пропорциональности w e 0 характеризует скорость движения электрона при единичной напряженности электрического поля и называется абсолютной скоростью движения. При комнатной температуре в чистом германии w e 0 = 0,36 м 2 /(В∙с).

Из двух последних уравнений получаем:

Повторив аналогичные рассуждения для дырочной проводимости, можем записать:

Тогда для полной плотности тока:

Сравнивая выражение для iс законом Ома i = κЕ", при S = 1 м 2 получим:

Как указано выше, у полупроводника с собственной проводимостью n i = p i , следовательно

w p 0 всегда ниже w e 0 , например в германии w p 0 = 0, 18 м 2 /(В∙с), а w e 0 = 0,36 м 2 /(В∙с).

Таким образом, удельная электрическая проводимость полупроводника зависит от концентрации носителей и их абсолютных скоростей и аддитивно складывается из двух членов:

κ i = κ e + κ p

Закон Ома для полупроводников выполняется лишь в том случае, если концентрация носителей n i не зависит от напряженности поля. При высоких напряженностях поля, которые называются критическими (для германия E кр ’ = 9∙10 4 В/м, для кремния E кр ’= 2,5∙10 4 В/м), закон Ома нарушается, что связано с изменением энергии электрона в атоме и снижением энергии перевода в зону проводимости, а также с возможностью ионизации атомов решетки. Оба эффекта вызывают увеличение концентрации носителей заряда.

Электрическая проводимость при высоких напряженностях поля выражается эмпирическим законом Пуля:

ln κ = ln κ 0 + α (E’ – E кр ’)

где κ 0 - удельная проводимость при Е’ = Е кр ’.

При повышении температуры в полупроводнике происходит интенсивная генерация носителей заряда, причем их концентрация увеличивается быстрее, чем уменьшается абсолютная скорость движения электронов из-за теплового движения. Поэтому, в отличие

от металлов, электрическая проводимость полупроводников с по- вышением температуры возрастает. В первом приближении для небольшого интервала температур зависимость удельной проводимости полупроводника от температуры может быть выражена уравнением

где k - постоянная Больцмана; А - энергия активации (энергия, необходимая для перевода электрона в зону проводимости).

Вблизи абсолютного нуля все полупроводники являются хорошими изоляторами. С повышением температуры на градус их проводимость увеличивается в среднем на 3 - 7%.

При введении в чистый полупроводник примесей к собственной электрической проводимости добавляется примесная электрическая проводимость. Если, например, в германий вводить элементы V группы периодической системы (Р, As, Sb), то последние образуют решетку с германием с участием четырех электронов, а пятый электрон, в связи с малой энергией ионизации атомов примеси (около 1,6∙10 –21), переходит от атома примеси в зону проводимости. В таком полупроводнике будет преобладать электронная проводимость (полупроводник называется электронным полупроводником п-типа]. Если атомы примеси обладают большим сродством к электрону, чем германий, например элементы III группы (In, Ga, В, А1), то они отнимают электроны от атомов германия и в валентной зоне образуются дырки. В таких полупроводниках преобладает дырочная проводимость (полупроводник р-типа]. Атомы примесей, обеспечивающие электронную проводимость, являются донорами электронов, а дырочную - акцепторами) .

Примесные полупроводники обладают более высокой электрической проводимостью, чем полупроводники с собственной проводимостью, если концентрация атомов донорной N Д или акцепторной N А примеси превышает концентрацию собственных носителей заряда. При больших значениях N Д и N A можно пренебречь концентрацией собственных носителей. Носители заряда, концентрация которых преобладает в полупроводнике, называются основными. Например, в германии n-типа n n ≈ 10 22 м –3 , в то время как n i ≈ 10 19 м~ 3 , т. е. концентрация основных носителей в 10 3 раз превышает концентрацию собственных носителей.

Для примесных полупроводников справедливы соотношения:

n n p n = n i p i = n i 2 = p i 2

n p p p = n i p i = n i 2 = p i 2

Первое из этих уравнений записано для полупроводника n-типа, а второе - для полупроводника р-типа. Из данных соотношений следует, что очень небольшое количество примеси (около 10 –4 0 /о) значительно увеличивает концентрацию носителей заряда, в результате чего электрическая проводимость возрастает.

Если пренебречь концентрацией собственных носителей и считать N Д ≈n n для полупроводника n-типа и N A ≈ р р для полупроводника р-типа, то удельная электрическая проводимость примесного полупроводника может быть выражена уравнениями:

При наложении электрического поля в полупроводниках n-типа перенос заряда осуществляется электронами, а в полупроводниках р-типа - дырками.

При внешних воздействиях, например при облучении, концентрация носителей заряда изменяется и может быть разной в различных частях полупроводника. В этом случае, как и в растворах, в полупроводнике протекают процессы диффузии. Закономерности Процессов диффузии подчиняются уравнениям Фика. Коэффициенты диффузии носителей заряда значительно выше, чем ионов в растворе. Например, у германия коэффициент диффузии электронов равен 98∙10 –4 м 2 /с, дырок - 47∙10 –4 м 2 /с. Типичными полупроводниками, помимо германия и кремния, при комнатной температуре являются ряд оксидов, сульфидов, селенидов, телуридов и т. д. (например, CdSe, GaP, ZnO, CdS, SnO 2 , In 2 O 3 , InSb).

ИОННАЯ ПРОВОДИМОСТЬ

Ионной проводимостью обладают газы, некоторые твердые соединения (ионные кристаллы и стёкла), расплавленные индивидуальные соли и растворы соединений в воде, неводных растворителях и расплавах. Значения удельной проводимости проводников второго рода разных классов колеблются в очень широких пределах:


Вещество c∙10 3 , См/м Вещество c∙10 3 , См/м
Н 2 О 0.0044 NaOH 10% раствор 30% »
С 2 H 5 OH 0.0064 КОН, 29% раствор
С 3 H 7 OH 0.0009 NaCl 10% раствор 25% »
СН 3 ОН 0.0223 FeSO 4 , 7% раствор
Ацетонитрил 0.7 NiSO 4 , 19% раствор
N,N-Диметилацетамид 0.008-0.02 CuSO 4 , 15% раствор
СН 3 СOOH 0.0011 ZnС1 2 , 40% раствор
H 2 SO 4 концентрированная 10% раство 40% » NaCl (расплав, 850 °С)
НС1 40% раствор 10% » NaNO 3 (расплав 500 °С)
HNO 3 концентрированная 12% раствор MgCl 2 (расплав, 1013 °С)
А1С1 3 (расплав, 245 °С) 0.11
АlI 3 (расплав, 270 °С) 0.74
AgCl (расплав, 800 °С)
AgI (твердый)

Примечание, Значения удельной проводимости растворов приведены при 18 °С.

Однако во всех случаях приведенные значения κ на несколько порядков ниже значений κ металлов (например, удельная проводимость серебра, меди и свинца равна соответственно 0,67∙10 8 , 0,645∙10 8 и 0,056∙10 8 См/м).

В проводниках второго рода в переносе электричества могут принимать участие все сорта частиц, имеющие электрический заряд. Если ток переносят как катионы, так и анионы, то электролиты обладают биполярной проводимостью. Если же ток переносит только один какой-нибудь сорт ионов - катионы или анионы, - то наблюдается униполярная катионная или анионная проводимость.

В случае биполярной проводимости ионы, двигающиеся быстрее, переносят большую долю тока, чем ионы, двигающиеся медленнее. Доля тока, переносимая данным сортом частиц, называется числом переноса этого сорта частиц (t i).При униполярной проводимости число переноса того сорта ионов, которые переносят ток, равно единице, так как весь ток переносится этим сортом ионов. Но при биполярной проводимости число переноса каждого сорта ионов меньше единицы, а

причем под числом переноса нужно понимать абсолютное значение доли тока, приходящегося на данный сорт ионов без учета того, что катионы и анионы переносят электрический ток в разных направлениях.

Число переноса какого-нибудь одного сорта частиц (ионов) при биполярной проводимости не является величиной постоянной, характеризующей только природу данного сорта ионов, а зависит и от природы частиц-партнеров. Например, число переноса ионов хлора в растворе соляной кислоты меньше, чем в растворе КС1 той же концентрации, поскольку ионы водорода более подвижны, чем ионы калия. Методы определения чисел переноса многообразны, и их принципы изложены в соответствующих лабораторных практикумах по теоретической электрохимии.

Прежде чем перейти к рассмотрению электрической проводимости конкретных классов веществ, остановимся на одном общем вопросе. Любое тело двигается в постоянном поле действующих на него сил с ускорением. Между тем, ионы во всех классах электролитов, кроме газов, двигаются под влиянием электрического поля данной напряженности с постоянной скоростью. Для объяснения этого представим себе силы, действующие на ион. Если масса иона m и скорость его движения w, то ньютонова сила mdw /dt будет равна разности силы электрического поля (М),двигающей ион, и реактивной силы (L’),тормозящей его движение, ибо ион двигается в вязкой среде. Реактивная сила тем больше, чем больше скорость движения иона, т. е. L’ = Lw (здесь L - коэффициент пропорциональности). Таким образом

После разделения переменных имеем:

Обозначив М – Lw = v , получим dw = – dv /L и

или

Константу интегрирования определяем из граничного условия: при t = 0 w = 0, т. е. отсчет времени начинаем с момента начала движения иона (момента включения тока). Тогда:

Подставив вместо постоянной ее значение, получим окончательно.

Для того, чтобы говорить об электропроводности, нужно вспомнить о природе электрического тока как такового. Так, при помещении какого-либо вещества внутрь электрического поля происходит передвижение зарядов. Данное движение провоцирует действие как раз электрического поля. Именно поток электронов и есть электроток. Сила тока, как известно нам из школьных уроков по физике, измеряется в Амперах и обозначается латинской буквой I. 1 А представляет собой электроток, при котором за время равное одной секунде проходит заряд в 1 Кулон.

Электрический ток бывает нескольких видов, а именно:

  • постоянный ток, который не изменяется в отношении показателя и траектории движения в любой момент времени;
  • переменный ток, который изменяет свой показатель и траекторию во времени (производится генераторами и трансформаторами);
  • пульсирующий ток претерпевает изменения в величине, но при этом не изменяет своего направления.
Под влиянием электрического поля разного рода материалы способны проводить электроток. Именно данное свойство называется электропроводность , которая у каждого вещества индивидуальна.

Показатель электропроводности напрямую связан с содержанием в материале свободно движущихся зарядов, которые не имеют связи с кристаллической сеткой, молекулами или атомами.

Таким образом, по степени проводимости тока материалы делятся на следующие типы:

  • проводники;
  • диэлектрики;
  • полупроводники.
Самый большой показатель электрической проводности свойственен проводникам. Они представлены в виде металлов или электролитов. Внутри металлических проводников ток обуславливается движением свободных заряженных частиц, таким образом, электропроводимость металлов электронная. Электролитам же свойственна электропроводность ионная, обусловленная движением именно ионов.

Высокая способность к электропроводности трактуется в электронной теории. Так, электроны курсируют среди атомов по всему проводнику из-за их слабой валентной связи с ядрами. То есть, свободно движущиеся заряженные частицы внутри металла закрывают собой пустоты среди атомов и характеризуются хаотичностью передвижения. Если же в электрическое поле будет помещен проводник из металла, электроны примут порядок в своем передвижении, перейдя к полюсу с положительным зарядом. Именно за счет этого и создается электрический ток. Скорость распространения электрического поля в пространстве аналогична скорости света. Именно с данной скоростью электроток движется внутри проводника. Стоит отметить, что это не скорость движения непосредственно электронов (их скорость совсем мала и равняется максимум нескольким мм/сек), а скорость распространения электроэнергии по всему веществу.

При свободном передвижении зарядов внутри проводника они встречают на своем пути различные микрочастицы, с которыми происходит столкновение и некоторая энергия отдается им. Проводники, как известно, испытывают нагрев. Это происходит как раз из-за того, что преодолевая сопротивление, энергия электронов распространяется в качестве теплового выделения.

Такие «аварии» зарядов создают препятствие передвижению электронов, что именуется в физике сопротивлением. Небольшое сопротивление несильно нагревает проводник, а при высоком достигаются большие температуры. Последнее явление используется в нагревательных устройствах, а также в традиционных лампах накаливания. Измерение сопротивления происходит в Омах. Обозначается латинской буквой R.

Электропроводность – явление, которое отображает способность металла или электролита проводить электроток. Данная величина обратная величине электрического сопротивления.
Измеряется электропроводность Сименсами (См), а обозначается буквой G.

Поскольку атомы создают препятствие прохождению тока, показатель сопротивления у веществ различный. Для обозначения было введено понятие удельного сопротивления (Ом-м), которое как раз дает информацию о способностях проводимости веществ.

Современные проводящие материалы имеют форму тонких ленточек, проволок с конкретной величиной площади поперечного сечения и определенной длиной. Удельная электропроводность и удельное сопротивление измеряется в следующих единицах: См-м/мм.кв и Ом-мм.кв/м соответственно.

Таким образом,удельное электрической сопротивление и удельная электропроводность являются характеристиками проводящей способности того или иного материала, площадь сечения которого равняется 1 мм.кв., а длина 1 м. Температура для характеристики – 20 градусов по Цельсию.

Хорошими проводниками электрического тока среди металлов являются драгоценные металлы, а именно золото и серебро, а также медь, хром и алюминий. Стальные и железные проводники имеют более слабые характеристики. Стоит отметить, что металлы в чистом виде отличаются более лучшими электропроводными свойствами по сравнению со сплавами металлов. Для высокого сопротивления, если это необходимо, применяют вольфрамовые, нихромовые и константные проводники.

Имея знания о показателях удельного сопротивления или удельной проводимости очень просто вычислить сопротивление и электропроводность определенного проводника. При этом в расчетах должна использоваться длина и площадь поперечного сечения конкретного проводника.

Важно знать, что показатель электропроводности, а также сопротивление любого материала напрямую зависит от температурного режима. Это объясняется тем, что при изменении в температуре происходят и изменения в частоте и амплитуде колебаний атомов. Таким образом, при росте температуры параллельно возрастет и сопротивление потоку движущихся зарядов. А при снижении температуры, соответственно, снижается сопротивление, а электропроводность возрастает.

В некоторых материалах зависимость температуры от сопротивления выражена очень ярко, в некоторых более слабо.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает . Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника. В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии. Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении. В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r , называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а .

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом . На схемах реостаты обозначаются как показано на рисунке 1, б . В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании. Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать "Сопротивление проводника равно 15 Ом", можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

Видео 1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро. 1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом. Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает .

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора. Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться. Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом. Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры. Сопротивление при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t 0 сопротивление проводника равно r 0 , а при температуре t равно r t , то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

Из формулы температурного коэффициента сопротивления определим r t :

r t = r 0 .

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

r t = r 0 = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r , то проводимость определяется как 1/r . Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)