Штамповки из коррозионностойких, жаростойких и жаропрочных сталей и сплавов. Общие технические требования. Способы получения штамповок дисков гтд из жаропрочных никелевых сплавов Штамповка жаропрочных сталей


В основном стали, штампуемые в холодном состоянии, могут обрабатываться и горячей штамповкой. Целесообразно более широко применять томасовскуго сталь, так как она при высокой температуре имеет лучшую деформируемость, чем мартеновская. Благодаря тому, что деформируемость сталей в горячем состоянии гораздо выше, можно применять и другие материалы с более низкой стоимостью. Для сильно нагруженных деталей применяют специальные марки.
а) Нелегированные стали
Различают три группы нелегированных сталей - с низким, средним и высоким содержанием углерода. В большинстве случаев для горячей штамповки наиболее пригодны томасовские малоуглеродистые стали. Иногда применяют сварочные стали, которые характерны нечувствительностью к перегреву. Фасонные детали, которые после штамповки подвергаются обработке резанием, рационально изготовлять из автоматной стали. Правда, при этом следует принимать предупредительные меры в отношении температуры обработки, так как эти стали из-за высокого содержания серы красноломки, особенно еще и при малом содержании марганца. Эту опасность можно предотвратить, избегая области критических температур от 700 до 1100°. Иначе говоря, температурный интервал штамповки для этих сталей должен быть гораздо уже, чем у подобных же сталей с меньшим содержанием серы. У кипящих автоматных сталей необходимо следить за тем, чтобы имелся достаточно толстый поверхностный слой, не затронутый ликвацией, иначе материал при больших деформациях получит трещины. Детали, работающие при высоких нагрузках, часто изготовляют из мартеновских сталей. Б табл. 8 дан обзор марок некоторых малоуглеродистых сталей, применяемых при горячей штамповке. Для широкого потребления наиболее пригодны St 37 и St 38.
Наиболее распространенные марки среднеуглеродистых сталей с содержанием углерода от 0,2 до 0,6% приведены в табл. 9. Обычные машиноподелочные стали могут быть томасовскими и мартеновскими, а улучшаемые стали, стандартизированные согласно DIN 17200, выплавляются только в мартеновских печах. Вместо качественных сталей марок С 22 до С 60 для интенсивно нагруженных деталей при желании применяют нелегированиые высокосортные марки сталей CK 22 до CK 60, характерные пониженным содержанием примесей (фосфор и сера не выше 0,035%). Аналогично этому имеются и улучшаемые автоматные стали мартеновской плавки.
Обзор прочностных свойств нелегированных сталей с малыми средним содержанием углерода представлен в табл. 10. Данные относятся к состоянию поставки, т. е. после нормализации. Аналогичные марки для изготовления болтов горячей штамповкой применяют и в США; при этом содержание фосфора составляет около 0,015%, а серы около 025%. В табл. 11 дана выборка марок нелегированных высокоуглеродистых сталей, употребляемых в некоторых случаях для горячей штамповки. Они хорошо деформируются при высокой температуре, однако необходимо помнить, что сопротивление деформации в обычном интервале температур ковки растет при повышении содержания углерода.
Температуры горячего деформирования для малоуглеродистой стали лежат в пределах 1150-900°. Допустимая начальная температура и соответственно температура выдачи из печи составляет 1300°. С ростом содержания углерода температура обработки падает; максимальная начальная температура при содержании углерода 1% составляет 1100°, а благоприятный интервал соответственно 1000-860°. Можно принять за практическое правило, что наибольшие температуры ковки лежат на 100-150° ниже линии солидуса по диаграмме состояния железо - углерод. Данные по области температур ковки нелегированных сталей и допустимый интервал менаду началом и концом штамповки следует брать согласно данным фиг. 9. Конечно, желательно не пользоваться верхней областью заштрихованного поля, чтобы начальная температура не переходила за штриховую кривую.
б) Легированные стали
Для улучшаемых сталей стремятся получить равномерность свойств по сечению, при этом высокая прочность при достаточной вязкости достигается с помощью закалки и последующего отпуска. Таким образом, состав сталей, применяемых для крупных деталей, должен определять достаточную прокаливаемость при заданных размерах.

Механические свойства нелегированных сталей для горячей штамповки
Таблица 10


Материал

Предел текучести о, в кГ/мм* не менее

Предел прочности на разрыв в кГf/AM*

Удлинение S1 в % не менее

Рядовые ста

St 00

_

(34-50)

(22)

ли

St 34

19

34-42

30


St 37


37-45

25


St 38


38-45

25


St 42

23

42-50

25


St 50

27

50-60

22


St 60

30

60-70

17


St 70

35

70-85

12

Улучшаемые

С 22

24

42-50

27

стали

С 35

28

50-60

22


С 45

34

60-72

18


С 60

39

70-85

15

Автоматные

9S20)




стали

10S20

(22)

(gt;38)

(25)


15S20]





22S20

(24)

О 42)

(25)


28S20

(26)

(gt;46)

(22)


35S20

(28)

(gt;50)

(20)


45S20

(34)

(gt;60)

(15)


60S20

(39)

(gt;70)

(12)

Таблица 11
Нелегированные высокоуглеродистые стали для горячей штамповки


Обозначение по стандарту DIN 17006*

Ns материала по стандарту DIN 17007

Химический состав в %

Твердость по Бринелю Hg** не более

С
около

Si

Mn

P
не более

S
не более

С75
C75W3
C85W2
C90W3
C100W2
* Эти обозн таллов» (SEL).
** Максимал стоянии.

0773
1750
1630
1760
1640
ачения соответс ьные значения

0,75
0,75
0,85
0,90
1,00
твуют T
твердое!

0,25-0,50
0,25-0,50 0,30 0,25-0,50 0,30
акже обозн и по Брине

0,60-0,80 0.60-0.80 0,35 0,40-0,60 0,35
ачениям по лю относят

0,045
0,035
0,030
0,035
0,030
«Перечlt;
ся к ста

0,045
0,035
0,030
0,035
0,030
ю стале лям в

240
240
190
240
200
н и черных ме- этожженном со-

Для повышения качества сталей имеется большой выбор легирующих элементов. При средних прочностных свойствах следует применять марганцевые и кремнемарганцевые стали (табл. 12), а также хромистые стали (табл. 13) для деталей с высокой прочностью- хромомолибденовые стали (табл. 14), при очень высоких требованиях к прочности-хромоникелемолибденовые стали (табл. 15).

65
ND




ra gt;!
RhS
D.O


Химический состав в %



о CPJ

Материал

иоозначе- ние по стандарту DIN 17006*

я SC
S-Sb
S H C3 Я h *7
s u tz
i- cQ

C

Si

Mn

P не более

S не
более

Гвердость г Брииелю И
30 не более

St 45
Марганцовистая сталь для крупных

14Мп4

0915

0,10-0,18

0,30-0,50

0,90-1,2

0,050

0,050

217

штампованных деталей " . . .

20Мп5

5053

0,17-0,23

0,45-0,65

1,1-1,3

0,035

0,035

217

Улучшаемая сталь (ранее VM125) . . Марганцовистая сталь для крупных

30Мп5

5066

0,27-0,34

0,15-0,35

1,2-1,5

0,035

0,035

217

штампованных деталей. .

ЗЗМп5

5051

0,30-0,35

0,10-0,20

1,1-1,3

0,035

0,035

217


36Мп5

5067

0,32-0,40

0,15-0,35

1,2-1,5

0,035

0,035

217

Улучшаемая сталь

40Мп4

5038

0,36-0,44

0,25-0,50

0,80-1,1

0,035

0,035

217

Сталь для износостойких деталей. .

75МпЗ

0909

0,70-0,80

0,15-0,35

0,70-0,90

0,060

0,060

217

St 52
Марганцовистокремнистая сталь для

17MnSi5

0924

0,14-0,20

0,30-0,60

7
3
о

0,060

0,050

217


38MnSi4

5120

0,34-0,42

0,70-0,90

0,00-1,2

0,035

0,035

217

Улучшаемая сталь (ранее VMS135). . Марганцовистокремнистая сталь для

37MnSi5

5122

0,33-0,41

1,1-1,4

1,1-1,4

0,035

0,035

217

крупных штампованных деталей....

46MnSi4

5121

0,42-0,50

0,70-0,90

0,90-1,2

0,035
/>0,035
217

То же

53MnSi4

5141

0,50-0,57

0,70-0,90

0,90-1,2

0,035

0,035

217


42MnV7

5223

0,38-0,45

0,15-0,35

1,6-1,9

0,035

0,035

217
Л §,тн 0^03h ачеЕяя соответствуют обозначениям «Перечня сталей и черных металлов» (SEL). Твердость по Бринелю относится к сталям в отожженном состоянии.
Таблица 13


Обозначе

2 gt;gt;?; S f- о CX 0.0


Химический состав в %


л до *
SS" г

Материал

ния по
стандарту

и я""- ;рч-






I

DIN 17006*

9. ч to

С

Si

Mn

Cr

V

я о 2 lt;и
I

Цементируемая сталь (ранее ЕС60)

15СгЗ

7015

0,12-0,18

0,15-0,35

0,40-0,60

0,50-0,80

_

187

Цементируемая сталь (ранее



0,14-0,19

0,15-0,35

1,0-1,3

0,80-1,1


207

ЕС80)

16МпСг5

7131

-

Цементир\-емая сталь (ранее ЕС100)

20МпСг5

7147

0,17-0,22

0,15-0,35

1,1-1,4

1,0-1,3

-

217

Улучшаемая сталь (ранее VC135) Улучшаемая сталь

34Сг4

7033

0,30-0,37

0,15-0,35

¦0,50-0,80

0,90-1,2

-

217

Хромистая улучшаемая сталь.

ЗбСгб

7059

0,32-0,40

0,15-0,35

0,30-0,60

1,4-1,7

-

217

Хромованадиевая сталь.... То же..#

41 Сг4 31CrV3

7035
2208

0,38-0,44
0,28-0,35

0,15-0,35
0,25-0,40

0,60-0,80
0,40-0,60

0,90-1,2
0,50-0,70

0,07-0,12

217


42CrV6

7561

0,38-0,46

0,15-0,35

0,50-0,80

1,4-1,7

0,07-0,12

217

Улучшаемая сталь (ранее

48CrV3

2231

0,45-0,52

0,25-0,40

0,50-0,70

0,60-0,80

0,07-0,12

-

VCVl 50)
Хромованадиевая сталь....

50CrV4

8159

0,47-0,55

0,15-0,25

0,70-1,0

0,90-1,2

0,07-0,12

235
/>58CrV4
8161

0,55-0,62

0,15-0,25

0,8-1,1

0,90-1,2

0,07-0,12


Хромомарганцовистая улучшаемая сталь

27MnCrV4

8162

0,24-0,30

0,15-0,35

!,0-1,3

0,60-0,90 "

0,07-0,12

-

Хромомарганцовистая сталь.

36MnCr5

7130

0,32-0,40

0,30-0,50

1,0-1,3

0,40-0,60

""""

-

Хромокремнистая сталь (для


4704

0,40-0,50

3,8-4,2

0,30-0,50

2,5-2,8

-

-

(45SiCrl6)








Подшипниковая сталь диаметром gt; 17 мм

ЮОСгб

5305

0,95-1,05

0,15-0,35

0,25-0,4

1,4-1,65

-

207

Подшипниковая сталь диаметром 10-17 мм

105Cr4

3503

1,0-1,1

0,15-0,35

0,25-0,4

0,90-1,15

-

207

Подшипниковая сталь диаметром lt;10 мм

105Cr2

3501

1,0-1,1

0,15-0,35

0,25-0,4

0,40-0,60

-

207

Подшипниковая сталь для не- ожавегощих подшипников....

40Cr52

4034

0,38-0,43

0,30-0,50

0,25-0,4

12,5-13,5

-

-

. Чти обозначения соответствуют также обозначениям «Перечня сталей и черных металлов» ** Твердость по Бринелю относится к сталям в отожженном состоянии.



Эти обозначения соответствуют также обозначениям «Перечня сталей и черных металлов» (SEL). "Твердость по Бритлю относится к сталям в отожжгином состоянии.

Таблица 15
Никелевые, хромоникелевые и хромоникелевые молибденовые стали


Обозначения по стандарту DIN 17006*

.Vs
материала по стандарту DIN 17007

Химически!! состав с %

Твердость по Бринелю Hb 30
не более **

С

SI

Mn

Cr

Mo

Ni

24 Ni 4

5613

0,20-0,28

0,15-0.35

0,60-0,80

lt;0,15


1,0-1,3

-

24 Ni 8

5633

0,20-0.28

0,15-0,35

0,60-0,80

lt;0,15

-

1,9-2,2

-

34 Ni 5

5620

0,30-0,38

0,15-0,35

0,30-0,50

lt;0,60

-

1,2- 1,5


15 Cr Ni 6

591У

0,12-0,17

0,15-0,35

0,40-0.60

1,4-1,7

-

1,4-1,7

217

ISCrNi 8

5920

0,15-0,20

0,15-0,35

0,40-0,60
/>1,8-2,1

1,8-2,1

235

30 Cr Ni 7

5904

0,27-0,32

0,15-0,25

0.20-0,40

1,5-1,9

-

0,60-0,90


45 Cr Ni 6

2710

0.40-0,50

0,15-0,35

0,60-0,80

1,2-1,5

-

1,1-1,4


36 Ni Cr 4

5706

0,32-0,40

0,15-0,35

0,50-0,80

0,40-0,70

(0,10-0,15)

0,70-1,0

-

46 Ni Cr 4

5708

0,42-0,50

0,15-0,35

0,90-1,2

0,70-1,0

(0,10-0,15)

0,70- 1,0


80 Cr Ni Mo 8

6590

0,26-0,34

0,15-0,35

0,30-0,60

1,8-2,1

0,25- 0,35

1,8-2,1

248


6582

0,30-0,38

0,15-0,35

0,40-0.70

1,4-1,7

0,15-0,2о

1,4-1,7

2оо

36 Cr N i Mo 4

6511

0,32-0,40

0,15-0,35

0,50-0,80

0,90-1,2

0,15-0,25

0,90-1,2

IH

28 Ni Cr Mo 4

6513

0,24-0,32

0,15-0,35

0.30-0,50

1,0-1,3

0,20- 0,30

1.0-1,3

-

28 Ni Cr Mo 44

6761

0,24-0,32

0,15-0,35

0,30-0,50

1,0-1,3

0,40- 0,50

1,0- 1,3


98 Ni Cr Mo 74

6592

0,24-0,32

0,15-0,25

0,30-0,50

1,1-1,4

0,30-0,40

1,8-2,1


36 Ni Cr Mo 3

6506

0,32-0,40

0,15-0,35

0,50-0,80

0,40-0,70

0,10-0,15

0,70-1,0


‘ Эти обозначения соответствуют также
Твердость по Бринелю относится к сталям в отожженном состоянии.

Необходимо ограничиваться стандартными марками сталей согласно новым стандартам DIN 17200 (раньше 1665, 1667 и соответственно 1662 и 1663).
Если нельзя воспользоваться высоколегированными сталями, то можно перейти на применение низколегированных сталей или на стали- заменители, хорошо оправдавшие себя в последние годы. Так, общеизвестна замена хромоникелевых сталей хромомолибденовыми, молибден частично заменяется ванадием, хром - марганцем и марганец -
кремнием. По последним сведениям оказалось возможным достигнуть высоких прочностных свойств и хорошей прокаливаемости благодаря малым присадкам бора (0,002 - 0,008%); при этом содержание хрома, никеля и молибдена в конструкционных сталях значительно снижается, например, никеля с 3,5 до 0,5%.
Наличие легирующих элементов при малом и среднем их содержании не оказывает вредного влиния на деформируе- Фиг. 9. Температура горячей штам- мость при высоких температу- повки нелегироваиных сталей в зави- рах соблюдении правиль-
оимости от содержания углерода гг 1
(схематически показана диаграмма ного интервала температур
состояния железо-углерод). штамповка осуществляется без
затруднений. Температуры деформации и у легированных сталей зависят от содержания углерода, малые добавки легирующих элементов не влекут за собой больших изменений в области затвердевания.
Значения, приведенные на фиг. 9, сохраняют силу и для легированных сталей. Однако для этих сталей выдерживают более узкие границы интервала температур.
При нагревании легированных сталей особенно важно учитывать, что увеличение легирования снижает теплопроводность и для этих сталей необходимо более длительное время нагрева. Кроме того, для таких сталей характерно возникновение большой разницы в температуре сердцевины и поверхности, что при больших сечениях может вызвать вредные термические напряжения. Поэтому высоколегированные стали должны сначала подогреваться и лишь затем нагреваться до ковочных температур. Это в первую очередь касается жаропрочных и нержавеющих сталей (табл. 16 и 17). Необходимо обратить внимание, что интервал температур ковки и штамповки здесь значительно уже, чем у нелегированных и низколегированных сталей. Деформируемость также невелика; аустенитные стали имеют большое сопротивление деформации, что при штамповке сложных форм обует ловливает включение дополнительных переходов.

Таблица 17
Механические сг»оистга жаропрочных и окалиностойких сталей


Обозначение по стандарту DIN 17006

I
№ материала по стандарту DIN 17007

Предел текучести Cg и KFjMMa не менее

Предел прочности на разрыв сь в KTjMMi не менее

Удлинение
S5 I! % UC MCHCt"

Примени ть на воздухе с температурой до С*


Х10СгА17

4713

25

45-60

20

800


XIOCrAl 13

4724

30

50-65

15

950

Феррит

XioCrAim

4742

30

50-65

12

1050

XI OCrA 12 4

4762

30

50-65

10

1200

ные стали

X10CrSi6

4712

40

60-75

18

000


XI OCrSi 13

4722

35

55-70

15

950


X10CrSil8

4741

35

55-70

15

1050

Дустенит-

/XI SCrNiSi 199

4828

30

60-75

40

1050

IX20CrNiSi254

4821

40

60-75

25

1100

ные ста-

X12CrNiSiNb2014

4855

30

60-75

40

1100

ЛИ

L\15CrNiSi2419

4841

30

60-75

40

1200

* Приведенные наибольшие температуры применения на воздухе являются ориентировочными, и при неблагоприятных условиях снижаются.

Жаропрочные и нержавеющие стали можно разделить на следующие группы: ферритные или незакаливаемые хромистые стали, мар- тенситные или закаливаемые хромистые стали и аустенитные хромоникелевые стали. Деформируемость их в горячем состоянии ухудшается в такой же последовательности. В недавнее время в США были проведены исследовательские работы, которые показали возможность улучшения деформируемости высоколегированных сталей, в первую очередь кислотоупорных хромоникелевых и аустенитных сталей, за счет присадки лигатур, например, церия.

ЦВЕТНАЯ МЕТАЛЛУРГИЯ

УДК 669.018.44:621.438

ИЗОТЕРМИЧЕСКАЯ ДЕФОРМАЦИЯ ЖАРОПРОЧНЫХ СПЛАВОВ

© Оспенникова Ольга Геннадиевна, канд. техн. наук; Ломберг Борис Самуилович, д-р техн. наук; Моисеев Николай Валентинович, ст. науч. сотр.; Капитаненко Денис Владимирович, начальник лаборатории

ФГУП «Всероссийский научно-исследовательский институт авиационных материалов». Россия, Москва. E-mail: [email protected]

Статья поступила 11.06.2013 г.

Представлены результаты разработки и промышленного освоения технологических процессов с применением высокотемпературной изотермической штамповки дисков газотурбинных двигателей (ГТД) и других деталей из труднодеформируемых гетерофазных жаропрочных никелевых и титановых сплавов.

При освоении производства заготовок диска ГТД решена комплексная задача - разработаны термомеханические режимы деформации сплавов, обеспечивающих реализацию эффекта сверхпластичности, разработаны эффективные защитно-технологические покрытия, а также композиции высокожаропрочных штамповых материалов, обеспечивающих высокую стойкость при работе на воздухе, созданы энергосберегающие конструкции изотермических установок.

С применением разработанных технологий освоено производство высококачественных экономичных штамповок из высокожаропрочных труднодеформируемых сплавов, изготовление которых по традиционной технологии вызывает значительные трудности, а в ряде случаев невозможно.

Ключевые слова: жаропрочные сплавы; изотермическая штамповка; рекристаллизация; диски ГТД; специальные прессы.

Преимущества изотермического деформирования, осуществляемого в инструменте, нагретом до температуры деформации, в конечном счете, сводятся к повышению технологической пластичности труднодеформируемых композиций, повышению точности, а также расширению возможности управления структурой и свойствами штамповок.

Разработанные во ФГУП «ВИАМ» термомеханические параметры получения заготовок из труднодеформируемых жаропрочных никелевых сплавов с регламентированной мелкозернистой структурой основаны на процессах, связанных с предпочтительными механизмами пластической деформации и интенсивностью одновременно протекающих термически активируемых процессов разупрочнения .

Изотермическое деформирование, получившее распространение в нашей стране и за рубежом, отражает условия проведения процесса, 5 тогда как температура металла в процессе деформирования будет повышаться вследствие тепло-^ вого эффекта деформации. Поэтому в некоторых случаях оказывается целесообразным изначально £ задавать неодинаковые температурные градиен-< ты нагрева заготовки и штампа.

Большинство реальных процессов изотерми-

ческой штамповки осуществляется в условиях динамического разупрочнения. Известно, что в металле, подвергнутом пластической деформации, возрастает плотность дислокаций и происходит деформационное упрочнение, сопровождаемое повышением напряжения течения. При высокотемпературном изотермическом деформировании плотность дислокаций не достигает максимального значения в результате прохождения термически активируемых процессов динамического разупрочнения. Кроме того, напряжение, при котором устанавливается равновесие между деформационным упрочнением и динамическим разупрочнением, снижается с уменьшением скорости деформации при изотермической деформации. При постоянной температуре скорость деформации оказывает решающее влияние на интенсивность разупрочнения, которое реализуется в результате процессов динамического возврата (динамической полигонизации или динамической рекристаллизации). В отличие от рекристаллизации отжига признаком прошедшей динамической рекристаллизации является наличие следов деформации внутри равноосных зерен (вытянутые субзерна, повышенная плотность дислокаций). Такая субструктура в новых зернах, сформировавшихся в результате рекристаллиза-

ции на ранних стадиях деформации, создается в процессе их дальнейшей деформации.

Если время, за которое определенная часть объема металла (обычно порядка 50%) претерпевает рекристаллизацию (¿я), больше, чем время деформирования материала до какой-то заданной степени деформации (¿Д), то новые зерна, которые образуются по мере развития динамической рекристаллизации, будут упрочняться таким же образом, как нерекристаллизованная матрица. Следовательно, при высоких скоростях деформации (0,5-500 с-1) вклад динамической рекристаллизации в разупрочнение незначителен. Такой процесс изотермического деформирования окажется малоэффективным с точки зрения снижения напряжения течения. Вместе с тем применение высоких скоростей деформации в отдельных случаях может приводить к интенсификации процесса динамической рекристаллизации и создавать иллюзию снижения температуры ее начала. Это явление связано с повышением температуры металла в результате деформационного разогрева, интенсивность которого возрастает с увеличением скорости и степени деформации. При деформации с малыми скоростями, когда < ¿д, динамическая рекристаллизация вносит значительный вклад в разупрочнение. Изотермическое деформирование в условиях полного динамического разупрочнения позволяет осуществлять формоизменение заготовки при низких значениях напряжений течения и является высокоэффективным процессом .

Таким образом, изотермическое деформирование с малыми скоростями по сравнению с традиционными способами горячего деформирования создает условия для более полного протекания процессов динамического разупрочнения. Ответственными за разупрочнение в зависимости от термомеханических условий деформации (температуры, степени и скорости деформации), а также от свойств деформируемого материала, в частности от величины энергии дефектов упаковки, могут быть возврат, полигонизация и динамическая рекристаллизация. Основным процессом разупрочнения при высокотемпературном изотермическом деформировании с большими обжатиями является динамическая рекристаллизация. Деформирование при пониженных температурах может сопровождаться динамическим возвратом.

Преимущества изотермической штамповки при изготовлении точных заготовок деталей из алюминиевых и титановых сплавов сложной фор-

мы с необрабатываемой поверхностью или минимальными припусками на окончательную механическую обработку подтверждены многолетним опытом применения на ряде предприятий авиационной промышленности. Были освоены технологические процессы изотермической штамповки большой номенклатуры деталей сложной формы с тонкими конструктивными элементами (ребра, полотна), глубокими полостями, резким перепадом сечений, большим отношением площади поверхности к объему.

Широкое применение изотермической штамповки деталей из сталей и жаропрочных никелевых сплавов сдерживалось из-за отсутствия штамповых материалов, обеспечивающих достаточную стойкость при температурах выше 1000 °С. Имеющийся зарубежный опыт использования в качестве штампового материала молибденовых сплавов требует создания сложных изотермических установок с вакуумной камерой.

Вместе с тем актуальность применения изотермической штамповки жаропрочных сплавов обусловлена разработкой новых гетерофазных композиций, проявляющих низкую технологическую пластичность и имеющих очень узкий температурный интервал деформации, высокое сопротивление деформации, высокую чувствительность к скорости деформации и концентраторам напряжений при обработке по традиционной технологии. Сплавы нового поколения, применяемые для дисков ГТД, содержат более 30% основной упрочняющей у"-фазы, сохраняющей термостабильность при температурах, близких к температуре солидус. Трудности, возникшие при освоении производства деформированных заготовок дисков и других полуфабрикатов из таких сплавов, вызвали необходимость разработки более эффективной технологии изготовления .

Важным этапом в решении проблемы изотермической штамповки таких сплавов явилась разработка способов предварительной термодеформационной обработки слитков и заготовок, обеспечивающей формирование регламентированной мелкозернистой гетерофазной структуры с оптимальной морфологией упрочняющих фаз, которая проявляет высокую (до 70-80%) технологическую пластичность и сверхпластич- ^ ность при определенных температурно-скорост- 7 ных параметрах изотермической деформации ^ . Разработка научно обоснованной технологии осуществляется с учетом критических тем- ^ ператур структурных и фазовых превращений: 5 растворения упрочняющих фаз, динамической и г

статической рекристаллизации. Для определения этих характеристик был разработан резистоме-трический метод, менее трудоемкий по сравнению с металлографическими. Не менее важным достижением в освоении высокотемпературной изотермической штамповки являлась разработка высокожаропрочных окалиностойких штампо-вых материалов, обладающих достаточно высокой стойкостью при температурах выше 1000 °С в воздушной среде.

Во ФГУП «ВИАМ» создан технологический комплекс изотермической штамповки для изготовления опытно-промышленных партий заготовок дисков серийных и перспективных ГТД из высокожаропрочных сплавов. В состав комплекса входят специальные гидравлические прессы усилием 630 и 1600 тс с регулируемой в широком диапазоне скоростью рабочего хода, программным управлением процессами нагрева и деформации (рис. 1).

Специализация прессового оборудования для изотермической штамповки достигнута в результате:

Размещения на столе пресса нагревательной установки, обеспечивающей контролируемый нагрев штампового инструмента до заданной температуры деформации заготовки;

Снижения и регулировки скорости рабочего хода пресса в пределах 0,1-4 мм/с;

Возможности выдержки деформируемой заготовки в штампе с приложением заданного усилия;

Рис. 1. Изотермический пресс усилием 1600 тс с системой мониторинга процесса деформации

Компьютерного контроля (мониторинга) процесса деформации .

Создание технологического комплекса обеспечивает реализацию технологического процесса при оптимальных температурно-скоростных параметрах деформации конкретного сплава .

Изотермическая установка позволяет поддерживать заданную температуру в пределах ±20 °С в диапазоне до 1150 °С, а регулированием скорос

Для дальнейшего прочтения статьи необходимо приобрести полный текст . Статьи высылаются в формате

ГОРЮНОВ АЛЕКСАНДР ВАЛЕРЬЕВИЧ, МИН ПАВЕЛ ГЕОРГИЕВИЧ, РИГИН ВАДИМ ЕВГЕНЬЕВИЧ, СИДОРОВ ВИКТОР ВАСИЛЬЕВИЧ - 2014 г.

  • ПРОБЛЕМЫ ПРОМЫШЛЕННОГО ИСПОЛЬЗОВАНИЯ СВЕРХПЛАСТИЧНОСТИ МЕТАЛЛОВ И СПЛАВОВ ПРИ ОБРАБОТКЕ МЕТАЛЛОВ ДАВЛЕНИЕМ

    ГРУНИН Н.Н., ЧУМАЧЕНКО Е.Н. - 2005 г.

  • Производство штамповок дисков из жаропрочных никелевых и титановых сплавов. Для решения важнейшей задачи обеспечения производства малоразмерных газотурбинных двигателей экономичными, высококачественными заготовками дисков из высокожаропрочных никелевых и высокопрочных титановых сплавов с эффективными технико-экономическими показателями разработан комплекс принципиально новых технологий, реализованных на вновь созданном специализированном уникальном оборудовании для выплавки и обработки давлением, не имеющих аналогов в отечественной и зарубежной промышленности.

    Разработанный технологический процесс предполагает использование в качестве исходной заготовки для изотермической штамповки в режиме сверхпластичности как серийного пресс-прутка, так и впервые в мировой практике непосредственно мерного слитка, полученного методом высокоградиентной направленной кристаллизации (ВГНК).

    Для реализации данного процесса в институте разработана специальная технология производства жаропрочных сплавов, включающая глубокое обезуглероживание и рафинирование расплава, применение шихтовых материалов повышенной чистоты по примесям, комплексное рафинирование редкоземельными металлами, использование всех видов отходов металлургического и литейного производств жаропрочных сплавов.

    Разработанная технология обеспечивает ультравысокую чистоту жаропрочного сплава по примесям, достижение узких интервалов легирования, экономию дорогих и дефицитных материалов.

    Создана не имеющая аналогов в мировой практике высокоградиентная технология направленной кристаллизации, для реализации которой впервые в отечественной и зарубежной практике спроектированы и изготовлены на производственной базе ВИАМ специализированные вакуумные плавильно-заливочные комплексы с компьютерными системами управления для высокоградиентной направленной кристаллизации заготовок из гетерофазных сплавов под деформацию УВНК-14, УВНК-10. В ВИАМ создана единая система компьютерного управления технологическими процессами литья заготовок.

    Во ФГУП «ВИАМ» разработаны принципиально новые способы термомеханической обработки труднодеформируемых гетерофазных сплавов, обеспечивающие формирование регламентированных структур с повышенной технологической пластичностью и проявлением сверхпластичности при оптимальных температурно-скоростных параметрах деформации.

    В результате разработана уникальная технология обработки давлением, обеспечивающая изготовление заготовок дисков сложной геометрии с гарантированным уровнем свойств из сложнодеформируемых никелевых сплавов – изотермическая штамповка на воздухе.

    В качестве основного механизма для достижения пластичности металла и однородности его структуры используется процесс контролируемой динамической рекристаллизации.

    Отличительной особенностью новой комплексной энерго-и ресурсосберегающей технологии, по сравнению с зарубежными, является то, что высокотемпературная изотермическая штамповка производится на воздухе, а не в конструкционносложных вакуумных установках с молибденовыми штампами.

    В отличие от применяемой за рубежом штамповки в вакуумной атмосфере, впервые в отечественной практике разработаны и применены высокоресурсный жаропрочный сплав для штампов и специальные защитные антиокислительные покрытия, являющиеся одновременно высокотемпературной смазкой при деформации.

    Разработаны специальные защитные технологические высокотемпературные эмалевые покрытия для защиты деталей из жаропрочных Ni и Ti сплавов. Разработанные в ВИАМ защитные технологические покрытия позволяют производить безокислительный технологический нагрев сталей в обычных печах вместо печей с контроллируемой атмосферой. Применение защитных покрытий в технологических процессах позволяет получать точные штамповки, экономить металл до 30%, электроэнергию – до 50%. Покрытия повышают стойкость штамповой оснастки в 2–3 раза.

    Для практической реализации разработанных технологий в ВИАМ создано опытно-промышленное производство по изготовлению штамповок дисков газотурбинных двигателей (ГТД) и энергетических установок. Проведена модернизация технологического оборудования, позволяющая осуществлять в автоматическом режиме процессы нагрева и формоизменения заготовки по разработанной компьютерной программе с точным исполнением оптимальных термомеханических параметров деформации. Изготовление штамповок осуществляется на изотермических прессах усилием 630 и 1600 тс с индукционным нагревом штампов.

    Для изотермической штамповки при температурах до 1200°С на воздухе разработана композиция высокоресурсного жаропрочного штампового сплава, а также защитно-технологические покрытия, являющиеся одновременно эффективными технологическими смазками при штамповке. Разработанные технологии и комплекс созданного оборудования для их осуществления не имеют аналогов в отечественной и зарубежной промышленности, а технология высокотемпературной изотермической штамповки на воздухе превосходит мировой уровень.

    Технология обеспечивает:

    • получение экономичных высокоточных штамповок из высокожаропрочных труднодеформируемых сплавов за счет реализации эффекта сверхпластической деформации при оптимальных термомеханических параметрах;
    • увеличение коэффициента использования материала КИМ в 2–3 раза за счет уменьшения технологических припусков в процессе штамповки и механической обработки;
    • снижение трудоемкости и энергоемкости производства в 3–5 раз за счет сокращения операций при штамповке и механической обработке деталей;
    • повышение производительности процесса в 4–5 раз;
    • повышение однородности макро- и микроструктуры и снижение дисперсии механических свойств в 1,5–2 раза;
    • снижение стоимости штамповок на 30–50%.

    (28) Приоритет Госудерствввиый комитет СССРпо делам нзооретекнй н открмтнй(72) Авторы изобретения Производственное объединение "Ленннградскттй металлическийзавод(54) СПОСОБ ИЗГОТОВЛЕНИЯ ШТАМПОВАННЫХ ИЗДЕЛИЙ ИЗ ЖАРОПРОЧНЫХ СТАЛЕЙ И СПЛАВОВИзобретение относится к области обработки металлов давлением и может быть использовано при штамповке изделий иэ жаропрочных сталей и сплавов, например, турбинных лопаток и дисков.Известен способ изготовления изделий иэ жаропрочных сталей и сплавов, включающий нагрев заготовки до температуры горячей деформации, предварительную штамповку, нагрев и окончательную штамповку (в частности,на молоте) со степенью деформации 3 - 10%)11) .Недостатком известного способа (при штамповке на молоте) является невысокое качество изделий ввиду трудности обеспечения эа 15 данного размера аустенитного зерна металла изделия.Целью изобретения является устранение укаэанного недостатка при молотовой штамповке, а именно, повышение качества иэделий за счет обеспечения заданного размера аустенит.ного зерна.Цель достигается тем, что интервалы между ударами молота при окончательной штамповке составляют 0,5 - 10 сек., общая длительностьокончательной штамповки составляет 8 - 35 сек.,а суммарная степень деформации заготовкипри окончательной штамповке превышает диа.назон критических степеней деформации на2 - 15%,Получение заданного размера аустенитногозерна в изделиях, штампованных на молотах,связано с необходимостью обеспечения такихтемпературно-временных параметров 1 дтамповки (различных для различных марок сталейи сплавов), которые бы обеспечили возможность получения суммарной деформации за несколько ударов молота как суммы деформаций за отдельные удары, т.е. чтобы в промежуткахмежду ударами молота, при выбранных температурах деформации, не успевали бы протекать процессы рекристаллиэации обработки,снимающие упрочнение от предшествующейдеформации.Нижний и верхний пределы временного ин.тервала между ударами определяются величиной йревышения температуры деформируемойзаготовки в интервал времени между удара.3ми относительно порога рекристаллизации обработки для выбранной марки сплава (стали)и диапазона степеней деформации металлав различных участках заготовки за один удармолота. При этом минимальное значение временного интервала (0,5 сек) относится к случаю, когда температура конца предшествующейдеформации (на металле заготовки) превышает порог рекристаллизации обработки на максимальную величину (180 - 200)С. Для дости.жения этого величина относительной деформации заготовки за предцествунщий удар, должна быть предельно большой (4 - 5)%.Максимальное значение временного интервала(10 сек) относится к случаю, когда величинаотносительной деформации заготовки за предшествующий удар была минимальной (1%),и превышение. температуры, предшествующейдеформации относительно порога рекристаллизации обработки было минимальным (20 - 30)СОграничение общей длительности циклаокончательной штамповки (8 - 35 сек,) связанос тремя основными причинами:1) ограничением снижения температурыштамповки, поскольку это связано с существенным возрастанием сопротивления заготовкидеформированию;2) расширением диапазона критических степеней деформации при снижении температурыконца деформации и, в связи с этим, увеличением вероятности попадания отдельныхучастков заготовки в зоны критических степеней деформации при тех же суммарных величинах деформации;3) увеличением вероятности получения недопустимо крупного зерна в зонах заготовкис заторможенным течением металла, (где отно.сительная деформация существенно ниже средней (расчетной) в выбранном сечении заготов.ки), так как в этих зонах подготовительныеэтапы процесса рекристаллиз "ции обработкимогут полностью не прерываться частнымиобжатиями при каждом ударе молота,и при определенной длительности цикла штамповки,процесс рекристаллизации дбработки в этихзонах может начаться до окончания штамповкит,е. в этом случае в указанных зонах суммарные деформации не будут равны сумме частных деформаций за все удары молота, а значит,суммарная деформация в этих зонах можетне оказаться закритической, что приведет кпоявлению недопустимо крупного зерна вэтих зонах,733828 4 10 15 20 25 ЗО З 5 40451Я55 Численные пределы общей длительности цикла штамповки получены опытным путем на жаропрочных сплавах типа Н 65 ВМТИ (ЭИ - 893) для различных температур и степеней деформации. Таким образом, новый положительный эффект, создаваемый за счет введения указанныхвременных интервалов, связан с обеспечениемполучения заданного размера аустенитного зерна при штамповке заготовок из жаропрочныхсталей и сплавов на молотах за несколькоударов,Ввиду того, что при штамповке изделий намолотах в оптимальном интервале температуриз всех жаропрочных сплавов и сталей рекристаллизация металла штампуемых заготовок неуспевает протекать во время деформации, металл заготовок упрочняется в процессе деформации, и поэтому сопротивление заготовокдеформированию существенно возрастает с увеличением относительной деформации. В связис этим, для обеспечения возможности штамповки заготовок максимальных габаритов сзаданным размером аустенитного зерна, общаядеформация при изготовлении заготовок распределяется между предварительной и окончательной штамповками таким образом, чтобы приокончательной штамповке величина относительной деформации по всему объему заготовки (с учетом неравномерного ее распределения)находилась на уровне минимальных величинзакритических степеней деформации (5 - 20)%для различных марок жаропрочных сплавови сталей, т.е. на (2 - 15)% превышающих диапазон критических степеней деформации).При окончательной штамповке относительные деформации, получаемые в заготовке эаотдельные удары молота суммируются и составляют за весь цикл штамповки закритическуювеличину (5 - 20)%,За интервал времени между ударами молота могут протекать процессы отдыха, полигонизации и начальные стадии процесса рекристаллизации обработки. Однако площади, занятые вновь образованными рекристаллиэованными зернами за интервалы между ударами не должны превышать площадей, соответствующих максимально допустимому размеру зерна. При этом для различных марок жаропрочных сплавов и сталей и различных фактических температур деформации интервалы времени между ударами не должны превышать (0,5 - 10) сек, а общая длительность окончательной штамповки не должна превышать (8 - ЗУу сек, После окончательной штамповки, ввиду недопустимо большого интервала времени между штамповкой и правкой, во избежание появления крупного зерна при последующей термообработке, производят совмещенную обрезку облоя и правку,на обрезном прессе, при которой практическиисключаются дополнительные малые (критичес.кие) деформации (вытеснение металла в облой) по телу заготовки. Лля жестких загото33828 6размером аустенитного зерна, в результатечего возрастает приблизительно в 2 раза эксплуатационная стойкость изделий, например,лопаток,25 Составитель О. КорабельниковТехред А, Щепанская Корректор Г. Решетник Редактор Т. КузнецоваЗаказ 1957/15 Тираж 986 Подписное ЦНИИПИ Государственного комитета СССР по делам изобретений и открытий 13035,Чосква,Ж, Раушская наб., д. 4/5Филиал ППП "Патент", г. Ужгород, ул.Проектная,4 5 7 вок, не подвергающихся недопустимо большим короблениям при обычной (несовмещенной) обрезке облоя на обрезных прессах, производят после окончательной штамповки обычную обрезку облоя на обрезном прессе без после. дующей правки.П р и м е р. Проводилась опытная штамповка заготовок турбинных лопаток иэ сплава ЭИ - 893/ХБ 65 В 9 М 4 ЮТ длиной 730 мм и весом 30 кг.Заготовки нагревались до температуры 1150 С, предварительно штамповались на штамповочном молоте с массой падающих: частей 25 т. за несколько ударов молота в интервале температур (1000 - 1140) С, с недоштамповкой, обеспечивающей при окончательной штамповке относительную деформацию по телу заготовки в пределах (8 - 20)%, обрезали на заготовках облой на обрезном прессе.Затем заготовки нагревали до температуры150 С, окончательно штамповали на том же молоте за 5 - 6 ударов с интервалами между ударами (- 5) сек и общей длительностью цикла штамповки (15 - 20) сек. Размер аустенитного зерна, полученный в штампованных изделиях, находился в основном в пределах.0,8 мм, отдельные зерна до 1 мм, при допускаемом размере зерна1 мм.Использование предлагаемого способа изготовления штампованных изделий из жаропрочных сталей и сплавов обеспечивает по сравнению с известным способом возможность штамповки крупногабаритных изделий с заданным Формула изобретения Способ изготовления штампованных изделийиз жаропрочных сталей и сплавов, включающий О нагрев заготовки до температуры горячей деформации, предварительную штамповку, нагреви окончательную горячую штамповку за несколько ударов молота, о т л и ч а.ю щ и йс я тем, что, с целью повышения качества 15 изделий за счет обеспечения заданного размерааустенитного зерна, интервалы между ударамимолота при окончательной штамповке составтяют (0,5 - 10) сек., общая длительность окончательной штамповки составляет (8 - 35) сек,а суммарная степень. деформации заготовкипри окончательной штамповке превышает диапазон критических степеней деформации на (2 -15)%. Источники информации,принятые во внимание при экспертизе 1. Маевский И. Л. Обработка давлением ЗО,жаропрочных сплавов, М., 1964, с. 30 - 32, 46,115 - 117.2, Журнал "Кузнечно-штамповочное производство", 1977, У 5, с. 22 - 23 (прототип),

    Заявка

    2512647, 01.08.1977

    ПРОИЗВОДСТВЕННОЕ ОБЪЕДИНЕНИЕ ТУРБОСТРОЕНИЯ "ЛЕНИНГРАДСКИЙ МЕТАЛЛИЧЕСКИЙ ЗАВОД"

    НЕМАЙЗЕР ЮРИЙ АЙЗИКОВИЧ, ШОБОЛОВ ПЕТР АЛЕКСАНДРОВИЧ, МКРТЫЧЯН ЗОРАБ АНТОНОВИЧ, ЧИВИКСИН ЯКОВ ЕФИМОВИЧ, ПАВЛОВ АНАТОЛИЙ ФЕДОРОВИЧ, САВИНОВ АВЕНИР МИХАЙЛОВИЧ, ЛЕВИН АЛЕКСАНДР ЕВГЕНЬЕВИЧ, БУРМИСТРОВ ИВАН ДМИТРИЕВИЧ

    МПК / Метки

    Код ссылки

    Способ изготовления штампованных изделий из жаропрочных сталей и сплавов

    Похожие патенты

    Изобретения является повышение качества и производительности штамповки.Для этого формовку осуществляют двусторонним обжимом заготовки с последующимрасплющиванием в месте набора металла, аокончательную штамповку производят путемпоперечного обжима с осевым подпором.На фиг, 1 показана заготовка с выпучиной,полученная осевым обжимом; на фиг. 2заготовка после расплющивания выпучины; нафиг. 3 - штампованный тройник.Способ осуществляется следующим образом.Заготовку 1, полученную осевым обжимом в штампе, расплющивают на оправке илп свободно в месте выпучины 2 до высоты, равнойминимальному диаметру обжатых торцовыхучастков 3 с образованием овала 4 в плоско 5 сти приложения усилий. Полученную такимобразом заготовку укладывают в штамп...

    В широтном направлении до полного их соприкосновения, Так как 7 Р =вЭ то коэффициент вытяжки определяетсяРтиз выражения К= - ,. т,е, испольэоВ Рдванне заготовки с фигурными вырезами приводит к снижению коэффициента вытяжки, что благоприятно сказывает- . ся на качестве штампованных изделий.Под действием широтных сжимающих напряжений, возникающих в заготовке при штамповке, большая ось овальных отверстий уменьшается, Учитывая, что оси вала выбраны, исходя из величины коэффициента вытяжки, то овал к конечному моменту штамповки превратится в круг, чем гарантируется захвати транспортировка штампованнога днища, Овальные отверстия, выпол-, ненные на периферийной части заготовки соответствующей технологическому припуску, не приводят к...